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基于多域信息融合与改进 ELM 的
船舶电机轴承故障诊断
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摘    要:［目的］针对监测信号在单一分析域内的特征参数难以完整表征监测对象的运行状态，以及极限学

习机（ELM）网络的模型参数难以达到最优的问题，提出一种基于多域信息融合与改进 ELM 的船舶电机轴承

故障诊断方法。［方法］首先，基于船舶电机轴承振动信号在时域、频域与时频域内的特征信息，构建多域

特征参数集，作为故障诊断模型的输入；然后，运用麻雀搜索算法改进 ELM 网络的模型参数优化方法，确定最

优的权值与阈值，进而提高故障诊断 ELM 模型的识别精度。最后，通过船用电机试验台架实验数据和开源实

验数据，对电机轴承故障状态进行识别。［结果］基于船用电机试验台架的实验数据验证表明，采用多域特

征参数集的故障诊断模型在训练集和测试集上的识别精度均为 100%；基于开源实验数据验证表明，改进

ELM 模型的测试集识别精度为 90.5%，相较于原始 ELM 模型提高了 12.7%，且训练集识别精度与测试集识别

精度均高于其他诊断模型。［结论］所提方法在输入特征参数集与诊断模型上均有改进，可有效识别电机

轴承故障状态，且模型具有良好的稳定性，为船舶电机轴承故障诊断提供参考。
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0    引　言

现代船舶是一种复杂的交通运输载体。在其

推进动力系统、照明系统、通信系统和控制系统

等主要运行系统中，均会运用到电机，因此，电机

是现代船舶不可或缺的核心部件之一。然而，由

于船舶真实运行场景复杂多变且环境潮湿，水分

易渗入电机，影响润滑效果，增加摩擦和磨损，导

致电机极易发生故障 [1]。而轴承作为电机的核心

部件之一，其振动信号包含了大量电机运行信

息，如故障频率、转频等。因此，对电机轴承振动

信号进行准确的故障诊断，不仅可以识别电机的

故障状态，也可以有效预防船舶发生深层故障。

随着信号处理技术的飞速发展，各学者针对

轴承振动信号故障特征提取方法的研究从时域 [2]、

频域 [3] 发展到时频域 [4-6]，增强了故障特征提取的

适应性。朱晓强等 [2] 通过对轴承振动加速度信号

的均方根趋势分析，判断是否存在轴承润滑不良

故障。Zheng等 [3] 提出一种基于频域的稀疏精英

群 LASSO 去噪（SEGLD）方法，揭示轴承故障信

号在频域上的稀疏特性，能够有效提取轴承微弱

故障特征。丁殿勇等 [4] 通过对原始信号的奇异谱

分解进行优化，并根据包络谱峰值指标选择敏感

的奇异谱分量，最后利用增强多点最优调整最小

熵解卷积（EMOMEDA）有效提取故障特征。薛红

涛等 [5] 提出一种基于分量加权重构与稀疏非负矩

阵分解相结合的故障特征提取方法，对时频能量

矩阵进行分解降维，有效提取故障特征。赵一楠

等 [6] 提出一种自适应窗口旋转优化短时傅里叶变

换的变转速滚动轴承故障诊断方法，提高了时频

表示的能量集中度，实现变转速工况下滚动轴承

的故障诊断。然而，面对复杂的船舶运行场景，

其电机轴承振动信号呈现出强干扰、非平稳、非

线性等特征，采用上述单一分析域内的故障特征

提取方法，仅能从一个角度提取故障特征，难以

多角度表征复杂场景下的故障特征。
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随着人工智能技术在工业领域的广泛应用，

基于机器学习的故障诊断技术也获得迅速发展。

王超等 [7] 提出一种基于自注意力子域自适应对抗

网络的故障诊断方法，利用对抗网络和子域自适

应模块来减小不同工况数据在全局域和局部域边

缘的分布差异，实验表明该方法能有效识别具有

代表性的轴承故障。Song 等 [8] 提出一种宽卷积核

卷积神经网络（WKCNN）模型，该模型无须任何

预处理即可从原始振动时域信号中自动提取特

征，实现智能诊断。An 等 [9] 提出一种基于周期稀

疏注意力和长短期记忆网络（LSTM）的非均匀轴

承振动信号滚动轴承故障诊断方法，该方法具有

较高的精度和较简单的结构，利用 LSTM 提取故

障信号中的长期依赖特征，可识别轴承故障状

态。An 等 [10] 提出基于递归神经网络（RNN）的轴

承智能故障诊断模型，提高了模型的训练效率和

诊断能力，具有较高的精度和较简单的结构。然

而，以上神经网络均有训练速度缓慢、计算复杂

度过高的缺点，并且没有良好的泛化能力，难以

适用于多个运行状态下的船舶轴承故障诊断领域。

极限学习机（extreme learning machine, ELM）是

一种新型单层前馈神经网络（single-hidden layer feed-
forward neural-network, SLFN），相较于传统的神经

网络，具有训练速度快、泛化能力强和适用于非

线性等优点，理论上适用于轴承振动信号故障诊

断。Xi 等[11] 提出一种基于小波分解和加权排列熵

(weighted  permutation  entropy，WPE) 的 ELM 故障

诊断分类方法，能够有效识别非平滑滚动轴承振

动信号的轴承故障类型。然而，原始 ELM 的隐含

层权值及阈值是随机产生的，且其内部结构具有

一定的复杂性，因此模型参数的设置存在难度，

影响模型的泛化能力。

基于上述问题，本文将提出一种基于多域信

息融合与改进 ELM 的船舶电机轴承故障诊断方

法。这一方法基于综合权重诊断指标（synthetic
weight detection index, SWDI）和小波包分解选择

高敏感时域特征参数和频域特征参数，进而构建

多域特征参数集；进一步利用麻雀搜索算法（spar-
row search algorithm, SSA）对 ELM 网络的模型参

数进行优化，搭建改进 ELM 故障诊断模型，用于

船舶电机轴承故障的智能诊断。 

1    相关参数选择与多域特征参数集
构建

 

1.1    时域特征参数选择

采用船舶用电机搭建试验台架，基于该台架

试验数据，介绍时域、频域和时频域内特征参数

的选择方法。船舶用电机试验台架如图 1 所示，

试验所选电机为 QSWP40030 X 型永磁无刷直流

电机。首先，选用 KLS7230S 可编程电机控制器，

通过终端 APP 匹配电机。
 
 

图 1　船舶用电机试验台架

Fig. 1    Experimental setup for ship motor
 

如图 1 所示，采集船舶用电机近端垂直、近

端水平和近端轴向的轴承振动信号，设置 4 种轴

承状态，分别为正常状态、外圈故障、内圈故障和

滚动体故障。试验中采样频率为 12.8 kHz，电机

各运行状态的振动信号分别采集 15 s，故将各运

行状态的振动信号数据以每段 4 096 个数据点划

分，每段信号共分为 45 组。转速设置为 300，500
和 700 r/min，负载设置为 10，20 和 30 N·m。

针对船舶电机轴承振动信号非线性的特点，

时域内特征参数能够反映信号随时间变化的幅值

特性。因此，选择 4 个典型的时域特征参数：均方

根 T1、时域偏度 T2、波形率 T3 和时域峭度 T4。

T1 =
1
Nh

Nh∑
j=1

∣∣∣y( j)
h

∣∣∣ (1)

T2 =
1
σ4

N∑
i=1

(y(i)− y)4 (2)

T3 =

∣∣∣∣∣∣∣ 1
σ4

h

Nh∑
j=1

(y( j)
h − yh)

4

∣∣∣∣∣∣∣ (3)

T4 =

∣∣∣∣∣∣∣ 1
σ4

l

Nl∑
k=1

(y(k)
l − yl)

4

∣∣∣∣∣∣∣ (4)

ȳ

y( j)
h ȳh

y(k)
l ȳl

式中：y(i) (i=1,2,…,N) 为振动信号序列，N 为时域

信号点数； 和 σ分别为信号序列均值和标准差；

(j=1,2,…,Nh) 为振动信号极大值序列； 为信

号极大值序列均值；σh 为信号极大值序列标准

差； (k=1,2,…,Nl) 为振动信号极小值序列； 和

σl 分别为信号极小值序列均值和标准差。

上述时域特征参数可以表征丰富的信号信
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息，但是输入的特征参数过多会使模型的诊断效

果变差，模型的泛化能力下降，同时也会增加模

型训练和预测的计算量。因此，根据船舶真实运

行时电机轴承可能存在的正常或故障状态，基于

SWDI 值分别评估时域特征参数的敏感度，SWDI
值计算公式如下 [12-13]：

DI =
|µ1−µ2|√
σ2

1+σ
2
2

(5)

f (DI) =
DI， 0 ⩽ DI ⩽ 2.33

2.33， DI > 2.33
(6)

w = 3− 1
√

2π

w − f (DI)

−∞
e−
µ2

2 dµ−2α (7)

S WDI =
N−1∑
i=1

N∑
j=i+1

RT∑
r=1

Q∑
q=1

wi jrq · f (DIi jrq) (8)

式中：μ1，μ2 分别为特征参数在电机轴承两种不同

状态下的均值；σ1，σ2 分别为对应标准差；N 为电

机轴承的状态数量，结合船舶用电机试验台架的

试验数据，取 N=4；RT 为时域高敏感特征参数的

数量，需将时域和频域考虑在内，且输入特征参

数不宜过多，因此取 RT=1；Q 为运行工况的数量，

结合采集的试验数据，根据转速共设置 9 种运行

工况，因此取 Q=9；设敏感度阈值 α=0.95；w 为区

分度权重系数。

通过计算时域特征参数的 SWDI 值 ，选取

SWDI 值最高的参数作为多域特征参数集的时域

高敏感特征。 

1.2    频域特征参数选择

轴承振动信号中可能存在的故障成分具有周

期性质，而频域特征参数能够分析频谱特征，针

对性地发现信号中的周期性故障成分。本文选择

频谱歪度 F1、频谱尖度 F2、时间通过率 F3 和波形

稳定指数 F4 作为高敏感频域特征参数的潜在选项：

F1 =
1

I ·σ3
f

Z∑
z=1

( fz− f )
3
·P( fz) (9)

F2 =
1

I ·σ4
f

Z∑
z=1

( fz− f )
4
·P( fz) (10)

F3 =

√√√√√√√√√√√√√√√√√
Z∑

z=1

f 4
z ·P( fz)

Z∑
z=1

f 2
z ·P( fz)

(11)

F4 =

Z∑
z=1

f 2
z ·P( fz)√√

Z∑
z=1

P( fz)
Z∑

z=1

f 4
z ·P( fz)

(12)

f

式中：fz(z=1,2,…，Z) 为振动信号频谱序列，Z 为频

谱点数；P(fz) 为 fz 的频率幅值；σf 为频谱基准偏

差； 为频谱序列均值。

取频域高敏感特征参数 RF=1，计算频域特征

参数的 SWDI 值，选取 SWDI 值最高的一组特征

参数，作为多域特征参数集的频域高敏感特征。 

1.3    时频域特征参数选择

时域特征参数只能反映信号随时域变化的特

征，而频域特征参数只能反映信号的频率特性，

无法全面表征非平稳轴承振动信号的特征信息。

时频域特征参数包含信号时域和频域的信息，能

够有效反映信号频谱随时间的变化情况，有利于

分析非平稳信号。三层小波包分解能够在时频域

之间取得良好的平衡，既能有效捕捉到信号的细

节特征，又避免过于复杂的计算。相较于二层分

解，三层分解能够提取更多的关键信息，而四层

或更多层的分解则可能导致冗余信息的增加，提

升计算复杂度。此外，三层小波包分解在处理旋

转机械信号时表现出较好的效果，能够有效识别

故障特征。因此，本文采用基于三层小波包分解

的时频分析方法获取信号时频域特征参数。由

于 DB3 母小波计算复杂度较低 [14]，选用 DB3 小波

作为母小波，对原始信号三层小波包分解，其原

理如图 2 所示。
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y(1, 1) y(1, 2)
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y(3, 1) y(3, 2) y(3, 3) y(3, 4) y(3, 5) y(3, 6) y(3, 7) y(3, 8)

图 2　三层小波包分解原理图

Fig. 2    Schematic diagram of three-layer wavelet packet decompos-
ition

 

图中，y(0,1) 代表原始信号，y(a,b) 代表第 a 层

（a=0,1,2,3）的第 b 个节点（b=1,2,…,2a）的小波包

分解得到的信号子频带，记第 3 层子频带能量值

为 Ei（ i=1,2,…,2a）。进一步地，基于频带能量占

比选择占比前三的子频带能量值作为多域特征参
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数集的时频域高敏感特征参数。 

1.4    多域特征参数集构建

基于上述时域、频域和时频域内特征参数的

选择方法，构建多域特征参数集，作为后续诊断

模型的输入，构建流程如图 3 所示。
 
 

时域特征参数 频域特征参数
基于小波包分解的
时频域特征参数

基于 SWDI 值选
择高敏感时域特
征参数

基于 SWDI 值选
择高敏感频域特
征参数

基于频带能量占比
选择时频域高敏感
特征参数

构建多域特征
参数集

图 3　多域特征参数集构建流程

Fig. 3    Process  for  constructing  multi-domain  symptom  parameter
sets

 

以船舶用电机试验台架的实验数据为例，采

样频率为 12.8 kHz，每种运行状态的振动信号采

集时长为 15 s。将每段信号按 4 096 个数据点划

分，共分为 45 组进行分析。基于此计算时域特征

参数与频域特征参数的 SWDI 值，如表 1 所示。
 
 

表 1    各特征参数的 SWDI 值
Table 1    SWDI values of each symptom parameter

分析域 特征参数 SWDI值

时域

T1 1 215.3

T2 871.3

T3 748.8

T4 759.7

频域

F1 381.3

F2 317.2

F3 1 488.5

F4 375.0
 

从表 1 可以看出，T1 在时域内的 SWDI 值最

高 ， F3 在频域内的 SWDI 值最高 ，故选择 T1 和

F3 分别作为时域和频域高敏感特征参数。

进一步地，对各运行状态的振动信号进行三

层小波包分解，获取不同运行状态的子频带能量

值，其百分比如图 4 所示。由于在不同状态下，子

频带的能量占比均超过 80%，分别选择能量百分

比排名前三的子频带能量值，作为时频域高敏感

特征参数。

从图 4 可以看出，不同运行状态下子频带节

点 6～节点 8 的能量百分比均高于其余节点的能

量百分比，因此选择 E6～E8 为时频域高敏感时频

特征参数。

根据以上对时域、频域、时频域特征参数的

分析，最终构建多域特征参数集{T1,F3,E6,E7,E8}。 

2    改进 ELM 网络模型
 

2.1    ELM 网络模型

ELM 作为一种新型 SLFN，与传统神经网络

方法不一样，先随机生成输入层权值和隐含层神

经元阈值，再使用最小二乘估计对 SLFN 进行训

练 [15]。这样可以避免梯度下降法可能带来的训练

不稳定问题。相比传统的监督式学习，ELM 不仅

学习速度快，而且有较好的鲁棒性。

设 ELM 的输入矩阵为 [Xi, Ei]，其中，Xi=[Xi1,
Xi2,…, XiN]T ∈ RN，Ei=[Ei1,Ei2,…,EiM]T ∈ RM，Xi 为 N 维
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(a) 正常状态各子频带能量百分比

(b) 内圈故障各子频带能量百分比

(c) 外圈故障各子频带能量百分比

(d) 滚动体故障各子频带能量百分比

图 4　不同运行状态下信号子频带能量百分比

Fig. 4    The  energy  percentage  of  signal  sub  bands  under  different
operating states
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输入样本，Ei 为 M 维输出期望。原始 ELM 模型

可表示为

H∑
j=1

β j f
(
W jXi+b j

)
= Yi (13)

式中：βj 为隐含层输出权值；f(·) 为激活函数；H 为

隐含层数；Wj 为随机产生的输入层权值；bj 为输

入层阈值；Yi 为实际输出。

将式（13）简化为矩阵形式：

Vβ = Y (14)

式中：V为隐含层输出矩阵；β为权值矩阵。

当给定 Wj 和 bj 保持不变时，则可将式（14）转
变成权值矩阵 β最小二乘解：

β = V+Y (15)

式中，V+为 V的 Moore−Penrose 广义逆 [16]。

由此可见，ELM 在训练效率和参数调整方面

具有优势，不过也存在一些问题，尤其是 ELM 的

初始权值参数多为随机定义，在训练过程中可能

会出现部分参数值为零的情况，导致部分隐藏节

点被屏蔽，从而影响最终的识别精度。为了解决

这一问题，将 SSA 与 ELM 相结合，可以对 ELM
的隐含层输出权值 βj 和输入层阈值 bj 进行优化

改进，从而提高 ELM 的识别精度和性能。 

2.2    麻雀搜索算法

SSA 算法模拟了麻雀群体觅食及反捕行为，

这种群体协作的思想使得 SSA 成为一种新型的

智能优化算法 [16]。在 SSA 中，发现者负责寻找食

物资源，并指导整个种群觅食的方向；追捕者根

据发现者找到的食物位置，进行移动追捕，同时

预警机制保证种群安全。基于此，构建 SSA 数学

模型，发现者麻雀的位置更新方法为

S t+1
i j =

S t
i j · exp

(
−i

a · tmax

)
, A < Z

S t
i j+QL, A ⩾ Z

(16)

S t
i j式中： 是第 t 次迭代时第 i 只麻雀在第 j 维的位

置信息；tmax 为最大迭代次数；Q 为随机数且服从

正态分布；L为单位矩阵；a 为随机数且 a∈(0,1]；
A 为警惕阈值；Z 为安全阈值。

其次，追捕者麻雀的位置更新方法为

S t+1
i j =


Q · exp

(S t−1
w −S t−1

i j

i2

)
, i >

n
2

S t
p+

∣∣∣S t
i j−S t

p

∣∣∣ ·Kp · L, i ⩽
n
2

(17)

式中：S t
w 为第 t 次迭代时所有麻雀的最差位置；

N 为麻雀种群个数；St
p 为第 t 次迭代时追捕者的

最优位置；Kp=K
T(K KT)−1，K为随机赋值 1 或−1 的

多维矩阵。当 i >n/2 时，表明第 i 个追捕者适应度

较低，没有从当前发现者的位置获得充足的食物。

最后，当麻雀种群感知到危险时，其位置更新

方法为

S t+1
i j =


S t
b+γ

∣∣∣S t
i j−S t

b

∣∣∣ , fi > fb

S t
i j+ ξ

( S t
i j−S t

w

( fi− fw)+ε

)
, fi = fb

(18)

S t
b式中： 为第 t 次迭代时所有麻雀的最优位置；γ

为步长调节因子；ξ为随机数； fi 为第 i 只麻雀的

适应度值；fb 为全局最优适应度值；fw 为全局最差

适应度值；ε为极小常数且大于 0。 

2.3    改进 ELM 故障诊断模型

当 ELM 的输出矩阵为非满秩状态时，由于其

隐含层权值及阈值的设置是随机定义的，其网络

的泛化性将受到一定的波动。通过 SSA 算法对

ELM 参数进行调优分析，可构建泛化性能更好的

故障诊断模型。基于此，改进 ELM 故障诊断模型

流程如图 5 所示。
 
 

开始

多域特征参数集归一
化及乱序处理

模型训练集 模型测试集

设置 ELM 网络与
SSA 初始参数

构建 ELM 最佳参数

基于适应度函数寻找
SSA 最优位置

满足迭代

模型训练集

否

是

反归一化输出结果

改进 ELM 模型

结束

终止条件？

图 5　改进 ELM 模型流程图

Fig. 5    Improved ELM model flowchat
 

1） 构建多域特征参数数据集，对训练集和测

试集进行划分并归一化数据；

2）  对 SSA 算法的种群数量进行初始化，赋

予 ELM 参数并设置迭代条件；

3） 设置适应度函数并完成种群角色划分，计

算适应度函数，从而选择当前最差和最好个体位置；

4）  更新发现者、追捕者以及预警个体位置，
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计算并保存相关状态参数；

5） 对比最优位置与当前迭代位置参数，更新

最优位置；

6） 是否满足迭代终止条件，若不满足则返回

步骤 4）；
7）  将最优参数赋予 ELM 并构建当前最优

ELM 网络结构模型。 

3    实验验证
 

3.1    电机试验台架的实验数据验证

为了验证所提方法的有效性，采用船舶用电

机试验台架的实验数据，基于改进 ELM 模型进行

电机轴承状态识别。

由 1.4 节可知，通过对数据集时域、频域、时

频域特征参数的分析，最终构建多域特征参数集

{T1, F3, E6, E7, E8}，并将其输入改进 ELM 模型

中。在本实验中，设置改进 ELM 模型的隐含层神

经元数量为 20，迭代次数为 20，同时采用了麻雀

种群优化算法，其中麻雀种群数量为 10，发现者

数量为 3，追捕者数量为 7。实验过程中，记录每

次迭代的损失值和准确率，并检查模型的收敛

性。实验结果显示，随着迭代次数增加，损失值

逐渐降低，准确率逐步提高。在第 17 次迭代时，

模型的损失值达到 0.01，表明已接近收敛。识别

结果如图 6 所示。
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(b) 测试集识别结果

图 6　基于改进 ELM 故障诊断模型的识别结果

Fig. 6    Recognition results based on improved ELM fault diagnos-
is model

 

从图 6 可以看出，模型在训练集和测试集上

的识别精度均为 100%，说明本文所提方法能够有

效识别电机轴承状态。

进一步地，为了验证多域特征参数集的优越

性，移除时频域高敏感特征参数，仅基于时域和

频域的高敏感特征参数构建模型的输入参数集，

识别结果如图 7 所示。
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图 7　基于时域与频域高敏感特征参数的识别结果

Fig. 7    Recognition results based on high sensitivity symptom para-
meters in time and frequency domains

 

从图 7 的识别结果可以看出，移除时频域特

征参数集后，训练集和测试集的识别精度分别为

94.4% 和 90.3%，与多域特征参数集基于改进 ELM
的识别结果相比，分别下降了 5.6% 与 9.7%，表明

多域特征参数集可以提高改进 ELM故障诊断模

型的识别精度。 

3.2    开源实验数据验证

为了进一步验证所提方法的广泛适用性，采

用美国凯斯西储大学（CWRU）的电机轴承开源实

验数据 [17]，对模型进行验证，并与其他方法进行对

比。选择电机驱动端的轴承振动信号，采样频率

为 12 kHz，转速为 1 797 r/min，电机负载为 0 hp，
电机运行状态分别为正常状态、轴承内圈故障、

轴承外圈故障、滚动体故障。

首先，将各运行状态的振动信号数据以每段

4 096 个数据点划分，每段信号共可分为 45 组，计

算各信号的时域特征参数与频域特征参数，并计

算各特征参数的 SWDI 值，结果如图 8 所示。

从图 8 可知，与其他特征参数相比，时域特征

参数 T1 与频域特征参数 F4 的 SWDI 值最为突出，

因此选择 T1 为时域高敏感特征参数，F4 为频域高

敏感特征参数。
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进一步地，对不同运行状态下的振动信号进

行三层小波包分解，获取不同运行状态的子频带

能量百分比。最后计算结果显示，不同运行状态

下的子频带节点 4～节点 6 的能量百分比均高于

其余节点的能量百分比，因此选择 E4～E6 为时频

域高敏感特征参数，构建多域特征参数集{T1, F4,
E4, E5, E6}，并进行归一化及乱序处理。

为了将更多数据用于训练且更准确地进行模

型评估，将 60% 的多域特征参数集设为训练集，

40% 设为测试集，将其分别输入改进 ELM 模型、

原始 ELM 模型、 SVM 模型 [18]、 LSTM 模型 [19] 和

CNN 模型 [20] 中。为确保参数设置的有效性，进行

了系统的参数调优。评估不同隐含层神经数量、

惩罚因子和学习率等参数对模型性能的影响。经

过多轮实验，发现当前设置的参数在多个性能指

标上优于其他组合。其中，设置改进 ELM 模型和

原始 ELM 模型的隐含层神经数量均为 20，迭代

次数为 20，并设置改进 ELM 模型中的麻雀种群

数量为 10，其中发现者数量为 3，追捕者数量为

7；设置 SVM 模型的惩罚因子为 4，采用线性核函

数；设置 LSTM 模型和 CNN 模型的初始学习率

为 0.3，学习率下降因子为 0.1，均采用 Adam 梯度

下降算法，最大训练次数为 300。基于此，各模型

诊断结果的识别精度如图 9 所示。
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图 9　各模型识别精度对比图

Fig. 9    Comparison chart of recognition accuracy of various models
 

从图 9 可知，改进 ELM 模型的训练集识别精

度达到 93.6%，与原始 ELM 模型的训练集识别精

度基本一致，但是改进 ELM 模型的测试集识别精

度为 90.5%，相较于原始 ELM 模型提高了 12.7%；

SVM 模型和 CNN 模型的训练集和测试集识别精

度均低于 80%，LSTM 模型训练集和测试集识别

精度分别为 87.0% 与 86.1%，识别效果均不如改

进 ELM 模型。

进一步地，为了比较各模型识别能力的稳定

性，对各模型分别进行 10 次运算，计算各自测试

集识别精度的均值与方差，结果如表 2 所示。
 
 

表 2    各模型诊断结果的指标对比

Table 2    Comparison  of  diagnostic  indicators  among  different
models

指标
不同诊断模型

改进ELM ELM SVM LSTM CNN

均值 0.928 0.819 0.754 0.858 0.731

方差 0.001 6 0.005 7 0.005 2 0.020 9 0.001 6
 

从表 2 可知，改进 ELM 模型在识别精度均值

和方差上的表现均为最优，说明该模型不仅具有

较强识别能力，而且识别精度高，具有良好的稳

定性；对应地，其他模型的识别精度均值和方差

表现均不如改进 ELM 模型，其中 LSTM 模型的识

别精度均值虽然达到了 0.858，但是其方差为

0.020 9，高于其他 4 种模型，说明该模型的稳定性

较差。 

4    结　语

本文提出了一种基于多域信息融合与改进

ELM 的船舶电机轴承故障诊断方法，又基于船舶

电机轴承振动信号在时域、频域与时频域内的特

征信息，构建多域特征参数集。经验证，该模型

通过多角度提取故障特征，提高了特征提取的适

应能力；同时，提出基于 SSA 的改进 ELM 模型，

并证明了该模型故障识别精度较高，且具有良好

的稳定性。

但是，本研究所用实验数据与船舶真实运行

环境下电机故障实验数据还存在一定差异，后续

有待于进一步验证所提方法的适应性和有效性。

同时，对于小样本故障状态的识别能力也有待于

深入研究。
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Fault diagnosis of ship motor bearings based on multi-domain
information fusion and improved ELM

GE Chun, YAN Zaoyu, SHANG Jiatong, XUE Hongtao*

School of Automotive and Traffic Engineering, Jiangsu University, Zhengjiang 212013, China

Abstract: ［Objectives］Aiming at the problems that the symptom parameters from monitoring signals in a
single  analysis  domain  fail  to  fully  characterize  the  operating  state  of  the  monitored  object,  and  the  model
parameters of the Extreme Learning Machine (ELM) network are difficult to achieve the optimization, a fault
diagnosis method for ship motor bearings is proposed, based on multi-domain information fusion and an im-
proved  ELM. ［Methods］  First,  a  multi-domain  feature  parameter  set  was  constructed  from the  vibration
signals  of  ship  motor  bearings  in  the  time  domain,  frequency  domain  and  time-frequency  domain.  This  set
served as the input to the fault diagnosis model. The sparrow search algorithm was then used to optimize the
model parameters of the ELM network by determining the optimal weights and thresholds, thus enhancing the
fault diagnosis accuracy of ELM model. Finally, the fault states of motor bearings were identified using experi-
mental data from a self-built test bench and open-source experimental datasets. ［Results］ Experimental data
verification  based  on  the  marine  motor  test  bench  demonstrated  that  the  fault  diagnosis  model  using  multi-
domain  feature  parameter  sets,  achieved  a  recognition  accuracy  of  100%  on  both  the  training  and  test  sets.
Verification with open-source experimental  data  showed that  the recognition accuracy on the test  set  for  the
improved ELM model was 90.5%, which is 12.7% higher than that of the original ELM model. Additionally,
the  recognition  accuracies  on  both  training  and  test  sets  were  higher  than  those  of  other  diagnostic  models.
［Conclusions］ This study has improved the input symptom parameter set and the diagnosis model. The pro-
posed method can effectively identify the fault states of motor bearings and demonstrates good model stability,
providing a valuable reference for fault diagnosis of ship motor bearings.
Key words: electric  motors；bearing  (machine  parts)； failure  analysis； fault  diagnosis；multi-domain in-
formation fusion；sparrow search algorithm；extreme learning machine
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