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3.2 EnuReEE R MERERTEE

SR T I A ek e B P R AL, AT
PR 42 48 2R 54 1k (sparrow search algorithm, SSA ) Al
19 1% 5 1 ( genetic algorithm, GA) - J& X} Fb 3,
3FPEVE R AT IR — Pl n B R R, aniEl 3 s,
v X FI Y DAy 07 J3E R R BT o

33 PRGN R
Fig. 3 The fitness functions of three algorithms
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Tax=500, 3 i 5 68 54 15 1 32 17 B[R] 4n &1 4 fr 7w,
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& 5 T 7~ 9 SWO, SSA, GA 4 5 /N i 07 B, w] %0
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Fig. 4 Algorithm running time of three algorithms
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A TCHE R ] SWO B3k ke A T A 45 1l 4 (sliding-
mode control, SMC) [ 1 1% Ifil I I S50

3.3 SWO EixMiLBEEFIZSSH

WER RIS EN ¢, o, ki, ks, &, &, BIERFD
FEECE N=300, )46 % )T 5t L=[10,10,50,50,1,1]
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AR BT Ta=500. A AL W B4 i 25 10 25
PERE, 35 N B pRBOR R ] 22 H ARG 1

F= at + axly + 300 + A4€aye (33)

K FNIENE; a), ay, ay, a, B HAE; ¢,
TEk R, 52 ok 2 G d w23k H BRE 90% ir
X IO R B 1) 5 2, SRy 2R BEMSCSAUET T 5 0,0 R 2R 50 1) i
KE ;5 epe N RGN FEHRERE . KRB
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ALBYSE TR [, e ks Koy €1, €5] =[84.3, 87.5, 59.2,
76.7,12.4, 8.7].

4 EHA RS RELEHERIE

K Fl AMEsim 1 Simulink % {4 #4786 405
A R I 4 i AMEsim #2528, 35 11 38 43 F L S
#6430 1 Simulink # # . EHA R4t 05 H 25
ML 1w,
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&1 EHA RZEHIXBEUHESH
Table 1 Key simulation parameters of EHA system

BHAATR i
A ELR/Q 0.048 5
H R L/mH 0.395
Ty Wb 0.119 4
R (kgm) 0.002 7
F LB PERELJE B,/ (N-s'm ™) 4.924x10
s 4
FEHD/(mL 1) 8
TR 21T R /m 0.8
W FEA RH AR A 3.78x10*
T S S i m kg 100
Pl % C,y/(L-min-MPa™) 0.135
T ZERELEB/(Ns'm™) 10 000
TR PR B /MPa 1700

Shy B8 I AR ST R I B A RO, AR AT R
PI 45 il 4% A1 SMC ¥ il & JF J&é 5 J X e ik 5%, Ry
TG, B PLE 685 U % —, SMC # il
8 SN R, SWO AL B4R il 25 5 Sk 7
K=o MRS EON: K,=440, K=10; J7
L INH SRR =98, =44, k=37, k=55, &=
14, £,=10; T & = A CSHN: =843, ¢,=875,
k=592, k,=76.7, £=12.4, £,=8.7. *t T4 HARL
B x=0.1 m /B BRI 17 A x,=0.6 m 14 KB BR
M 10, 3 b4 il 4 1 e 1o 45 SR A0 151 6 B .

Il 6 RTHL: 1) 505 58—k AT E S8, 8
256 A2 18 AN R I 9 B BR A5 5, MR T T8 =
MpE=mmaF, HATRRNEERE, D) FE
—FNJ7 S B BT O ()RR Y R R, T LB
7 SR M) 7 T L (0 385 0, 8 9 A 5 B T
SAE K R RN B R i 7 34 [ s 3R A T AR
Wl 3) NS R B, TR — M R W
X531, 1 58 = A WSSO [ U AR A T O R — A
R BIRTE T 42.5% Fil 33.6%.
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S, WO T P s

3 b A RS R 22 R 8 I, T HIAE
WAREZIE, FE—MTE NESIRES
40.44% F10.14%, 1M 5 2 = IR ZETH 0.11%,
Ho e T8 8.

T ERE T R = A BREEPERE, SR R R
0.5 Hz M 1E 3% A5 T 1E M4 e (8, 577 R %)
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Fig. 6 Step response results for three controllers
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Optimization of EHA sliding mode controller
based on spider wasp algorithm
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Abstract:

achieve precise position control of an electro-hydrostatic actuator (EHA) while reducing the parameter tuning

[ Objective | This paper proposes using the Spider Wasp Optimization (SWO) algorithm to

difficulty of the EHA sliding mode controller and improving its comprehensive performance. [ Methods | A
simplified model of an EHA is established and its sliding mode controller is designed. The sliding mode sur-
face and reaching rate parameters of the controller are then adjusted by the SWO algorithm, and Matlab/
Simulink and AMEsim simulation software is used to build a co-simulation model for verification. [ Results |
The parameters of the sliding mode controller are adjusted manually and by the SWO algorithm respectively.
The comparative simulation results show that the sliding mode controller optimized by the SWO algorithm
avoids overshoot and has enhanced anti-interference properties, and its convergence speed is improved by
33.6%, proving the feasibility of optimizing the sliding surface and reaching rate parameters of an EHA slid-
ing mode controller using the SWO algorithm. [ Conclusion ] The results of this study can provide theoreti-
cal references for the design of EHA sliding mode controllers.

Key words: EHA equipment; sliding-mode control; optimization; spider wasp optimizer; joint simulation
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