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Fig.2 3D structure of a hyperbolic rotating thin shell
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Fig.3 Schematic diagram of the radius of curvature for the mid-
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Table 1 Principal dimensions of the model
VE S5 a/mm b/mm I/mm t/mm
1 2900 290 500 2.9
2 15 000 1 000 1000 10.0
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Table 2 Calculation results of typical stress

VE ST i {H/MPa PR TH/MPa RZE %
1 672.4 671.5 0.1
2 848.7 841.1 0.9
3 827.1 847.1 -23
e xd
—847.14 —847.14

B 7 7% 3 BB b A S =
Fig. 7 Contour plot of circumferential stress on the neutral surface

at the mid-span of Case 3 model
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Theoretical calculation method of hyperbolic rotating

thin shell bending problem

ZHANG Er, MIN Shaosong , HUA Lin, LIU Cong, Chen Guotao’

College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China

Abstract: [ Objective ] In order to analyze the bending characteristics of a hyperbolic rotating thin shell, the

complex two-dimensional mechanical problem is simplified into a one-dimensional bending problem based on

Euler's Bernoulli beam theory. [ Method ] By analyzing the force and deformation characteristics of shells

and belt beams, a structural mechanical model is established, and a double curvature rotating thin shell bend-
ing differential equation is obtained by combining the physical equation of plate and shell theory with the
bending differential equation of a single-span beam. An empirical formula for typical stress is proposed and its

accuracy verified by an ANSYS-based simulation. [ Results ]| The results show that the error between the

simulation and the formula is about 2.3%, which demonstrates the high accuracy of the formula in predicting

typical stress and verifies the correctness of the theoretical calculation method. [ Conelusion ] The proposed

method can provide useful references for the design and optimization of similar structure.

Key words: double curvature; bending problem; shell belt; stresses; theoretical calculation
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