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Optimization method for island and reef hybrid power generation systems'
power capacity based on adaptive ant colony algorithm

LI Weibo", PENG Zhiming', ZHANG Hao', ZHANG Maojie', FANG Hualiang’

1 School of Automation, Wuhan University of Technology, Wuhan 430070, China
2 School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

Abstract: [ Objectives | Aiming to address the existing challenges in the power capacity configuration of is-
land and reef hybrid power generation systems, this paper proposes an optimization method based on the ad-
aptive ant colony algorithm (ACA). [ Methods ] An ACA is used as the core optimization tool to configure
the power capacity of an island and reef hybrid power generation system. The process of ants foraging is simu-
lated by employing the ACA and using the power generation of renewable energy as dynamic pheromones in
the search space. The optimal solution is then found through global search, achieving the full utilization of re-
newable energy. Taking Wai Lingding Island as the target island, a 'wind-solar-diesel-storage' microgrid hy-
brid power generation system model is constructed, and the ACA 1is used to optimize its capacity configura-
tion. [ Results | The simulation results of the algorithm indicate that, compared to the improved Grey Wolf
algorithm and Artificial Bee Colony algorithm, the ACA can effectively reduce the operational costs and envir-
onmental pollution of the microgrid hybrid power generation system, while ensuring the stability of the power
supply. [ Conclusions ] The results of this study can effectively increase the power supply stability of the micro
grid hybrid power generation system, reduce operating costs and environmental pollution, and thus achieve ef-
ficient utilization of energy resources.

Key words: hybrid power generation system; adaptive ant colony algorithm (ACA); capacity configuration;
dynamic pheromone; economy
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Fig. 5 Hourly wind speed changes within a year
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Table 2 Key parameters of wind turbines

ZH Bl
HUE D #E kW 20
HE MIE/ (mes™) 12
LA RGH(m-s™) 45
Ja B AGHE/(mes ) 3
VA SE A/ 78 68 500

K B Rl B T BB 6 114 2 2 2 P R Ak B L
T L 22 2 AR Ay A SE AR ) 10%, 4 30 il AR —
P Shy A S AR 1) 1%, fil A ok 25 4. HoAth &
BrES RN 3 IR
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Table 3 Key parameters of photovoltaic cells

ZH Sl

BUE DD H/W 100

Trik /v 21.4

IR fevE A 6.08
AR % 21
[aPS % NI 13
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AR R W) 3K A B 10%, G 477 B AR — i Ay W) 3K ol A
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Table 4 Key parameters of battery

ZH Hifig
WUE A& /Ah 200
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AE B R % 85
VA SE A/ 78 1300
TR REIR A R RYIE B0, Sl ALt o 226 2
SR T 2SR, BT DL S AL A E R KT

%%mﬁm$o¢%mﬁﬁmmmm%ﬁm%$
Jy 800 kW, I SZ A Ky 120 000 JC, 446 % il
SERA ) 2%, fH FH 77 A 29°R 9 000 h, FEIH &1 R
0.265 L/kWh, 0453 H R7ESRIE B 7.38 J0/L.
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Fig. 8 The average annual cost curve of the system under the cyc-
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Table 5 Optimization results of two schemes
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Table 6 Optimization results of three algorithms
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Fig. 12 Optimization iteration process of each of the three algorithms
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