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Ship hydrogen-electric hybrid power system model and
life cycle carbon emission assessment method

CHU Yue', CHEN Li"', GUAN Cong’

1 State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Key Laboratory of High Performance Ship Technology of Ministry of Education in China,
Wuhan University of Technology, Wuhan 430063, China

Abstract: [ Objectives | A life cycle carbon emission assessment method is proposed to comprehensively
evaluate the carbon emission reduction capacity of hydrogen-electric hybrid ships. [ Methods ] First, an energy
flow model of the power system is established using the Matlab/Simulink software platform. Hydrogen con-
sumption and electricity consumption under actual operating conditions are then calculated, and the life cycle
carbon emissions are obtained. Finally, sensitivity analysis is performed on carbon emissions from different
power sources and hydrogen sources. [ Results ] The results of an inland river ferry show that compared with
the traditional diesel engine power system, the hydrogen-electric hybrid system can reduce carbon emissions
by 30.24% in one operation cycle. The sensitivity analysis results show that the carbon emissions of the hydrogen-
electric hybrid system are not necessarily better than those of the traditional diesel power system, so it is re-
commended to use renewable energy for hydrogen production and power generation to significantly reduce
carbon emissions (up to 94.2%). [ Conclusions ] The results of this study can provide references for the power
system design of green ships.

Key words: hydrogen-electric hybrid power system; energy flow model; life cycle carbon emission assess-
ment
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