面向舰载机器人应用的三维语义增强扩散策略操作方法

3D semantic enhanced diffusion policy for intelligent shipborne robot

  • 摘要:目的】针对舰载机器人自主作业中受制于有限的计算与部署条件而难以实现高水平认知与决策的矛盾问题,提高其在资源受限下的实时环境认知与自主决策能力。【方法】提出一种以扩散策略为核心的轻量化三维语义增强框架SGDP。该框架首先基于3D Gaussian Splatting对操作物体进行语义建模,随后利用实时姿态估计的语义流更新,实现动态场景下的语义一致性;并设计一种融合语义、几何与关节状态的多模态扩散策略,在提升语义感知能力的同时可以轻量化部署在舰载机器人中。【结果】在舰载机器人实验平台上进行的放置刀具、抓取马克笔与水瓶倒水三类复杂任务中,SGDP算法在已知物体任务执行中平均成功率达到81.67%,在未知物体任务中仍保持78.33%的成功率,显著优于DP3与GenDP方法。【结论】结果表明该框架提供了一种高效的感知—决策一体化可行方案,实现了在有限资源下环境认知与自主决策的高效协同,为解决舰载机器人等单体无人装备在轻量化部署与高水平自主决策之间的矛盾提供了有效的技术途径。

     

    Abstract: Objectives To address the tension between limited onboard computation/deployment conditions and the need for high-level perception and decision-making in shipborne robots, we aim to enhance real-time environmental understanding and autonomous decision-making under resource constraints. MethodsWe propose SGDP, a lightweight 3D semantic-augmented framework centered on a diffusion policy. The framework first performs semantic modeling of manipulated objects via 3D Gaussian Splatting, then maintains semantic consistency in dynamic scenes through a semantic flow updated by real-time pose estimation. We further design a multimodal diffusion policy that fuses semantic cues, geometry, and joint states, improving semantic perception while remaining suitable for lightweight shipborne deployment.ResultsOn a shipborne robotic testbed and across three complex tasks—placing a knife, grasping a marker pen, and pouring water from a bottle—SGDP achieved an average success rate of 81.67% on tasks with known objects and 78.33% on tasks with unseen objects, significantly outperforming DP3 and GenDP.Conclusions The results demonstrate an efficient, integrated perception-decision solution that coordinates environmental understanding and autonomous decision-making under limited resources, providing a practical pathway to reconcile lightweight deployment with high-level autonomy for single-unit unmanned systems such as shipborne robots.

     

/

返回文章
返回