一种基于改进YOLOv12的轻量化船舶目标检测算法:SEE-YOLO

SEE-YOLO: A lightweight ship-object detection algorithm based on an improved YOLOv12

  • 摘要:
    目的 针对船舶目标检测在复杂海洋环境中模型冗余、计算复杂度高及实时性不足的问题,提出一种基于SEE-YOLO模型的船舶目标检测方法。
    方法 以YOLOv12n为基础模型,首先使用StarNet替换原有主干,通过星型元素乘法将低维特征隐式映射到高维非线性空间,显著降低模型参数量;其次,设计轻量化的Efficient-Head检测头,通过参数共享机制进一步压缩模型结构,提升推理速度;最后,在Neck结构中嵌入高效通道注意力机制(ECA),在不增加模型复杂度的前提下增强特征提取能力。
    结果 在SeaShips7000数据集上的实验表明,SEE-YOLO模型参数量和计算量分别为1.27M和3.3GFLOPs。与基础模型YOLOv12n相比,改进后模型参数量降低49.2 %,计算量降低43.1 %,FPS达到550,提升27.3 %,mAP@0.5达到98.8 %。与最新YOLOv13n相比,SEE-YOLO在mAP@0.5指标上持平,但参数量减少48%,计算量降低47%,FPS提升67%。
    结论 SEE-YOLO算法在检测精度、模型效率和推理速度之间实现了更优的平衡,尤其适用于资源受限的海上监控场景。

     

    Abstract:
    Objectives To address the issues of model redundancy, high computational complexity, and insufficient real-time performance in ship detection within complex maritime environments, we propose a novel vessel detection approach based on the SEE-YOLO model.
    Methods Based on the YOLOv12n baseline, we first replace the original backbone with StarNet, which implicitly maps low-dimensional features into a high-dimensional non-linear space via star-shaped element-wise multiplication, substantially reducing the parameter count. Second, we propose a lightweight Efficient-Head detector that further compresses the model architecture through a parameter-sharing mechanism and improves inference speed. Finally, an Efficient Channel Attention (ECA) module is embedded into the Neck structure, enhancing the feature-extraction capability without increasing model complexity.
    Results Experiments on the SeaShips7000 dataset demonstrate that the proposed SEE-YOLO model contains 1.27 M parameters and requires 3.3 GFLOPs. Compared with the baseline YOLOv12n, SEE-YOLO reduces the parameter count by 49.2 % and the computational cost by 43.1 %, while achieving 550 FPS, an improvement of 27.3 %. Moreover, the mAP@0.5 reaches 98.8 %. Compared to the latest YOLOv13n, SEE-YOLO achieves comparable performance in terms of mAP@0.5, while reducing the number of parameters by 48%, decreasing computational cost by 47%, and improving FPS by 67%.
    Conclusions The SEE-YOLO algorithm achieves a superior balance among detection accuracy, model efficiency, and inference speed, rendering it particularly well-suited for resource-constrained maritime surveillance scenarios.

     

/

返回文章
返回