润湿性表面气泡融合特性数值模拟分析

Numerical analysis of bubble coalescence characteristics on wetting surface

  • 摘要:
    目的 旨在促进超疏水表面与气泡复合减阻技术的发展,研究润湿性表面气泡的融合特性,揭示表面润湿性、气泡间距和气泡尺寸对气泡融合特性的影响规律。
    方法 基于流体体积(VOF)方法,建立水下润湿性表面气泡融合的数值模型,分析不同润湿性表面上气泡的融合与铺展特性。通过改变表面接触角、气泡间距和气泡尺寸,研究其对气泡融合特性的影响。最后,将模拟结果与实验数据进行对比,验证模型的准确性。
    结果 研究结果表明,表面接触角的增大和气泡间距的减小有助于气泡的融合,而气泡尺寸的增大则会减缓气泡在表面的铺展速度,不利于气泡融合。具体而言,当表面接触角从130°增大到170°时,气泡开始融合的时间从5.6 ms缩短到3.2 ms,减少了42.9%;气泡的最大铺展距离从6.53 mm增加到9.4 mm,提升了138%。
    结论 研究结果可为超疏水表面与气泡减阻技术的耦合设计提供理论依据。研究还表明,优化表面润湿性和气泡间距可以显著提升气泡融合效果,进而提高气泡减阻的稳定性和效率。

     

    Abstract:
    Objective This study aims to advance the development of composite drag reduction technology involving super-hydrophobic surfaces and bubbles by investigating the coalescence characteristics of bubbles on wetting surfaces and revealing the effects of surface wettability, bubble spacing, and bubble size on bubble coalescence.
    Methods A numerical model of bubble coalescence on an underwater wetting surface is established based on the volume of fluid (VOF) method. The coalescence and spreading characteristics of bubbles on different wetting surfaces are analyzed by varying the surface contact angle, bubble spacing, and bubble size. The accuracy of the simulation results is validated by comparing them with experimental data.
    Results The results show that increasing the contact angle of the wetting surface and decreasing bubble spacing facilitate bubble coalescence, while increasing bubble size slows down the spreading speed of bubbles on the surface and is not conducive to accelerating bubble coalescence. Specifically, when the contact angle increases from 130° to 170°, the initial coalescence time of bubbles decreases from 5.6 ms to 3.2 ms (a reduction of 42.9%), and the maximum spreading distance of bubbles increases from 6.53 mm to 9.4 mm (an increase of 138%).
    Conclusions The findings provide a theoretical basis for the coupling design of super-hydrophobic surfaces and bubble drag reduction technology. Optimizing surface wettability and bubble spacing can significantly enhance bubble coalescence, thereby improving the stability and efficiency of bubble drag reduction.

     

/

返回文章
返回