基于扰动观测器的欠驱动UUV预设性能路径跟踪容错控制

Prescribed performance path-following fault-tolerant control of underactuated UUV based on disturbance observer

  • 摘要: 为了探究水下无人航行器(Unmanned Underwater Vehicle,UUV)面临的复杂水下环境以及其自身特性导致执行机构故障频发问题,研究了欠驱动UUV在洋流扰动、模型不确定和执行器故障下的预设性能路径跟踪容错控制。针对UUV安全航行问题,设计一种结合改进预设性能函数和障碍Lyapunov函数的路径跟踪容错控制器,实现全状态约束的容错控制。设计一种新的预定义时间扰动观测器,用以观测UUV路径跟踪的集总扰动,包括洋流扰动、模型参数摄动、未建模动力学和执行器故障引起的推力损失。将带有执行器故障的集总不确定项引入预设性能容错控制器进行补偿以实现容错控制,将路径跟踪全状态误差限制在预设边界之内。最后,仿真结果表明UUV的位置误差、姿态角误差及角速度误差均能快速收敛并严格限制在预设的安全边界内,其中位置误差稳态边界为1米,姿态角误差边界为0.05弧度。当执行器发生80%推力损失时,扰动观测器能快速估计集总扰动,控制器在1秒内完成补偿,路径跟踪偏差未显著增大,最大瞬态误差不超过预设值的20%。这一结果验证了所提方法对执行器故障的强鲁棒性,通过统一扰动观测与预设性能约束,简化了容错架构,实现了故障快速响应与全状态安全约束的双重目标,为UUV在复杂环境下的高可靠性航行提供了普适性解决方案。

     

    Abstract: To address the frequent actuator failures caused by complex underwater environments and the inherent characteristics of Unmanned Underwater Vehicle (UUV), this research investigates the prescribed performance path-following fault-tolerant control for underactuated UUV subject to ocean current disturbances, model uncertainties, and actuator faults. For UUV safe navigation, a path-following fault-tolerant controller is designed by integrating an improved prescribed performance function and a barrier Lyapunov function to achieve full-state-constrained fault-tolerant control. A novel predefined-time disturbance observer is developed to estimate the lumped disturbances in UUV path-following, including ocean currents, parameter perturbations, unmodeled dynamics, and thrust loss due to actuator faults. The lumped uncertainties with actuator faults are incorporated into the prescribed performance fault-tolerant controller for compensation, ensuring all path-following state errors remain within predefined bounds. Simulation results demonstrate that the position error, attitude angle error, and angular velocity error converge rapidly while strictly adhering to the prescribed safety constraints, with a steady-state position error bound of 1 meter and an attitude angle error bound of 0.05 radians. When actuators experience 80% thrust loss, the disturbance observer quickly estimates the lumped disturbances, and the controller compensates within 1 second without significant path-following deviation. The maximum transient error does not exceed 20% of the prescribed limit. These findings validate the strong robustness of the proposed method against actuator faults. By unifying disturbance observation and prescribed performance constraints, the fault-tolerant control structure is simplified, achieving both fast fault response and full-state safety guarantees. This work provides a universal solution for high-reliability UUV navigation in complex environments.

     

/

返回文章
返回