增强大语言模型驱动的交汇水域多船协同避碰决策

Cooperative collision avoidance decision-making for intelligent ships in intersection waters driven by enhanced large language models

  • 摘要: 【目的】为解决交汇水域多船协同避碰的复杂决策问题,本文提出了一种增强大语言模型(LLM)驱动的交汇水域多船协同避碰决策方法。【方法】通过分析交汇水域船舶通航特性,将交汇水域多船协同避碰问题建模为部分可观测马尔科夫决策过程(POMDP);设计中心-分布式双层决策架构:中心层通过LLM协调器收集多船态势信息,结合通航规则和冲突严重度确定通行序列;分布式层同样由LLM赋能的智能船舶基于思维链提示工程进行渐进式决策推理,智能船综合场景描述、协调指令、航行经验生成避碰决策;为克服LLM在精确计算、持续学习方面的固有局限,并抑制其潜在的“幻觉”风险,通过集成决策增强模块提升LLM的决策能力。【结果】仿真实验证明,应用该增强LLM驱动方法的DeepSeek-v3,能够在典型的交汇水域两船、三船及四船会遇冲突场景下,实现安全、高效的协同避碰,全程有效维持了3节以上的最低舵效航速和超过两倍船长的安全距离。【结论】所提方法推动了LLM在航海决策领域的工程化应用,为实现复杂环境下高度自主的舰船人工智能提供了新的途径。

     

    Abstract: Objectives To address the complex cooperative collision avoidance problem among multiple intelligent ships in intersection waters, this paper proposes an enhanced large language models(LLM)-driven decision-making method for multi-ship cooperative collision avoidance in intersection waters. Methods By analyzing the navigation characteristics of ships in intersection waters, the multi-ship cooperative collision avoidance problem is modeled as a Partially Observable Markov Decision Process (POMDP). A central-distributed dual-layer decision architecture is designed: Central layer: An LLM coordinator collects multi-ship situational information, integrates navigation rules, and conflict severity to determine passage priority sequences; Distributed layer: LLM-empowered intelligent ships perform chain-of-thought prompting-based progressive decision-making, synthesizing scenario descriptions, coordination instructions, and navigation experience to generate collision avoidance strategies. To overcome the inherent limitations of LLM in precise computation and continual learning—and to mitigate their potential hallucination risks—we integrate a decision‐augmentation module to enhance the LLM’ decision‐making capabilities. Results Simulation experiments demonstrate that the proposed enhanced LLM-driven method implemented in DeepSeek-v3 achieves safe and efficient cooperative collision avoidance in typical intersection scenarios involving two, three, and four ships. The system maintains a minimum maneuvering speed of over 3 knots throughout and ensures a safety margin exceeding twice the ship length Conclusions This method advances the engineering application of LLMs in maritime decision-making and provides a new pathway for realizing highly autonomous shipboard artificial intelligence in complex operational environments.

     

/

返回文章
返回