杨坤, 张玮, 李营, 等. 水下爆炸作用下复合材料圆柱壳结构失效模式分析[J]. 中国舰船研究, 2023, 18(2): 55–63. doi: 10.19693/j.issn.1673-3185.02835
引用本文: 杨坤, 张玮, 李营, 等. 水下爆炸作用下复合材料圆柱壳结构失效模式分析[J]. 中国舰船研究, 2023, 18(2): 55–63. doi: 10.19693/j.issn.1673-3185.02835
YANG K, ZHANG W, LI Y, et al. Failure mode analysis of composite cylindrical shell structure under underwater explosion[J]. Chinese Journal of Ship Research, 2023, 18(2): 55–63. doi: 10.19693/j.issn.1673-3185.02835
Citation: YANG K, ZHANG W, LI Y, et al. Failure mode analysis of composite cylindrical shell structure under underwater explosion[J]. Chinese Journal of Ship Research, 2023, 18(2): 55–63. doi: 10.19693/j.issn.1673-3185.02835

水下爆炸作用下复合材料圆柱壳结构失效模式分析

Failure mode analysis of composite cylindrical shell structure under underwater explosion

  • 摘要:
      目的  为提高无人水下航行器(UUV)、自主式水下航行器(AUV)、空气瓶等外壳防护结构的抗爆抗冲击能力,对水下爆炸和高静水压力载荷下碳纤维增强复合材料(CFRP)圆柱壳的结构响应及其失效模式进行研究。
      方法  利用ABAQUS软件和耦合欧拉−拉格朗日法(CEL)方法构建在静水压力和冲击载荷共同作用下CFRP圆柱壳内爆的计算模型,通过与实验结果对比来验证数值模拟方法的有效性,并在此基础上获得CFRP圆柱壳内爆的失效模式和参数化影响。
      结果  研究发现,CFRP圆柱壳水下内爆可分为3个阶段:屈曲阶段、壁面接触阶段、失效扩展阶段;减小圆柱壳长径比能提高结构的抗冲击能力,且影响CFRP圆柱壳的失效模式;随着纤维层数的增加,壳结构的静水承载能力和抗冲击能力增长速率增加;增加冲击块速度,壳的壁面界接触和失效扩展越显著,发生的基体断裂更多,且裂纹在圆柱壳长度方向上有明显增大趋势。
      结论  所做研究可为水下航行器等结构设计工作提供数据指导,推动复合材料在上述领域中的应用。

     

    Abstract:
      Objective  In order to improve the explosion and impact resistance of the protective structures of unmanned underwater vehicles (UUVs), autonomous underwater vehicles (AUVs), air bottles, etc., the structural response and failure modes of carbon fiber reinforced plastic (CFRP) cylindrical shells under underwater explosion and high hydrostatic pressure are investigated.
      Method  A computational model of CFRP cylindrical shell implosion under the combined action of hydrostatic pressure and impact load is established using ABAQUS software and the coupled Euler-Lagrange (CEL) method. The effectiveness of the numerical simulation method is then verified by comparison with the experimental results. On this basis, the failure modes and parametric effects of CFRP cylindrical shell implosion are obtained.
      Results  The underwater implosion of composite cylindrical shells can be divided into three stages: buckling, wall contact and failure propagation. Reducing the length-to-diameter ratio of the CFRP cylindrical shell can improve the impact resistance ability and affect the failure mode of the structure. With the increase in the number of fiber layers, the static water bearing capacity and impact resistance ability of the shell structure increase. With the increase in the impact block velocity, the wall boundary contact and failure propagation of the cylindrical shell become more obvious, matrix fractures occur more frequently and the cracks show an obviously increasing trend in the lengthwise direction of the cylindrical shell.
      Conclusion  The results of this study can provide data guidance for the structural design of underwater vehicles and promote the application of composite materials in the field.

     

/

返回文章
返回