毛柳伟, 祝心明, 黄治新, 等. 水下爆炸载荷下复合点阵夹层结构冲击响应分析[J]. 中国舰船研究, 2022, 17(3): 253–263. doi: 10.19693/j.issn.1673-3185.02503
引用本文: 毛柳伟, 祝心明, 黄治新, 等. 水下爆炸载荷下复合点阵夹层结构冲击响应分析[J]. 中国舰船研究, 2022, 17(3): 253–263. doi: 10.19693/j.issn.1673-3185.02503
MAO L W, ZHU X M, HUANG Z X, et al. Impact response of composite lattice sandwich plate structure subjected to underwater explosion[J]. Chinese Journal of Ship Research, 2022, 17(3): 253–263. doi: 10.19693/j.issn.1673-3185.02503
Citation: MAO L W, ZHU X M, HUANG Z X, et al. Impact response of composite lattice sandwich plate structure subjected to underwater explosion[J]. Chinese Journal of Ship Research, 2022, 17(3): 253–263. doi: 10.19693/j.issn.1673-3185.02503

水下爆炸载荷下复合点阵夹层结构冲击响应分析

Impact response of composite lattice sandwich plate structure subjected to underwater explosion

  • 摘要:
      目的  为提升舰船的水下抗爆能力,针对水下爆炸冲击波作用下新型防护结构碳纤维增强复合材料(CFRP)−点阵铝夹芯板的抗冲击能量吸收性能展开研究。
      方法  首先,利用有限元软件ABAQUS建立非药式非接触水下爆炸载荷下CFRP−点阵铝夹芯板的数值仿真模型,并验证其可靠性;然后,通过控制单一变量来分析CFRP−点阵铝夹芯板上、下面板每层纤维厚度和点阵夹芯结构杆件直径对其能量吸收性能与结构挠度的影响;最后,基于上述3种设计参数,采用实验设计方法和数值模拟方法建立代理优化模型,用于对CFRP−点阵铝夹芯板结构的能量吸收性能进行优化设计。
      结果  结果显示:在CFRP−点阵铝夹芯板质量恒定的情况下,其优化结果可使比吸收能提高284%;在充分考虑下面板变形的情况下,优化结果的比吸收能可提高59%。
      结论  研究表明,该CFRP−点阵铝夹芯板优化结构可有效提升其能量吸收性能,而响应面法是一种可有效提高结构能量吸收性能的优化方法。

     

    Abstract:
      Objective  In order to improve the anti-shock perfomance of ships subjected to underwater explosion, this paper studies the energy absorption and impact resistance of the new protective structure consisted of carbon fiber reinforced plastic (CFRP)-lattice aluminum sandwich plates.
      Methods  First, finite element software ABAQUS is used to establish the numerical simulation model of CFRP-lattice aluminum sandwich plates under non-explosive and non-contact underwater explosion load, and its reliability is verified. Single variables are then controlled to analyze the influence of the fiber layer thickness of the upper and lower panels and the rod diameter of the sandwich lattice structure on the energy absorption characteristics and structural deflection of the CFRP-lattice aluminum sandwich plates. Finally, based on the above three design parameters, a surrogate optimization model is established using the experimental design method and numerical simulation methodology to optimize the energy absorption of the CFRP-lattice aluminum sandwich plate structure.
      Results  The results show that when the mass of the CFRP-lattice aluminum sandwich plates is constant, the specific absorption of the optimized results can be increased by 284%. In full consideration of the deformation of the lower plates, the specific energy absorption of the optimized results can be increased by 59%.
      Conclusions  This study shows that the proposed optimized structure of CFRP-lattice aluminum sandwich plates can effectively improve their energy absorption capacity, and the response surface method is an optimization method that can effectively improve the energy absorption characteristics of the structure.

     

/

返回文章
返回