郭燚, 于士振, 郭将驰, 李晗. 舰船中压直流电力系统的混合储能管理策略仿真分析[J]. 中国舰船研究, 2019, 14(2): 126-136, 143. DOI: 10.19693/j.issn.1673-3185.01198
引用本文: 郭燚, 于士振, 郭将驰, 李晗. 舰船中压直流电力系统的混合储能管理策略仿真分析[J]. 中国舰船研究, 2019, 14(2): 126-136, 143. DOI: 10.19693/j.issn.1673-3185.01198
Guo Yi, Yu Shizhen, Guo Jiangchi, Li Han. Simulation analysis on hybrid energy storage management strategy in warship medium voltage DC power system[J]. Chinese Journal of Ship Research, 2019, 14(2): 126-136, 143. DOI: 10.19693/j.issn.1673-3185.01198
Citation: Guo Yi, Yu Shizhen, Guo Jiangchi, Li Han. Simulation analysis on hybrid energy storage management strategy in warship medium voltage DC power system[J]. Chinese Journal of Ship Research, 2019, 14(2): 126-136, 143. DOI: 10.19693/j.issn.1673-3185.01198

舰船中压直流电力系统的混合储能管理策略仿真分析

Simulation analysis on hybrid energy storage management strategy in warship medium voltage DC power system

  • 摘要:
      目的  为了抑制大功率脉冲性负载接入舰船中压直流(MVDC)电力系统时的母线电压大范围跌宕现象,同时将母线电压维持在安全裕度内,混合储能系统(HESS)成为解决此类问题的首选方案,而舰船MVDC系统的混合储能管理策略对HESS能量利用效率的影响很大。
      方法  基于此,首先分别设计PI控制器和模糊逻辑控制器,用以预测HESS的参考功率,从而满足负载功率需求。然后,对比分析这2种控制方法,针对锂电池组和超级电容器组之间的能量不均衡问题,设计第2级模糊逻辑控制器进行功率再分配。最后,建立MVDC系统、HESS、恒功率负载和脉冲负载的Matlab/Simulink模型,开展仿真分析。
      结果  仿真结果表明:模糊逻辑控制器和PI控制器能够根据MVDC的系统状态进行功率预测,且模糊逻辑控制策略优于PI控制策略;第2级模糊逻辑控制器能够根据锂电池组与超级电容器组之间的荷电状态,合理地进行功率再分配。
      结论  舰船MVDC系统的混合能量管理策略可以维持系统的功率平衡,平滑抑制母线波动,从而提高系统稳定性和生存能力。

     

    Abstract:
      Objectives  In order to suppress the occurrence of a massive bus voltage drop caused by a large-power pulsed load entering the Medium Voltage Direct Current (MVDC) power system of the ship and to maintain the bus voltage within the required safety margin, the Hybrid Energy Storage System (HESS) is a promising solution to this problem. However, the hybrid energy management strategy of the ship MVDC system can greatly affect the energy efficiency of the system.
      Methods  Therefore, the PI controller and fuzzy logic controller are designed to predict the reference power of HESS to meet the load power demand. The two methods are analyzed and compared. In light of the energy imbalance existing between the lithium battery and super capacitor, we then design the second-level fuzzy logic controller for redistribution of power. The Matlab/Simulink models of MVDC system, HESS, constant power load and pulse load were established for simulation analysis.
      Results  The simulation results show that the fuzzy logic controller and PI controller can predict the required power of the system according to the state of the MVDC system, and the fuzzy logic control strategy is superior to PI control strategy. The second-level fuzzy logic controller can redistribute the power reasonably based on the state of charge between the lithium battery pack and the supercapacitor bank.
      Conclusions  The hybrid energy management strategy of the ship's MVDC system can maintain system power balance, suppress busbar fluctuations, improve system stability and survivability.

     

/

返回文章
返回