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0 Introduction

An increasingly high standard for lightweight is

raised in the design of modern ships to enable high-

er cargo loading and economical efficiency and ob-

tain lighter hull structures on the premise of ensur-

ing its due performance. Compared with the tradi-

tional stiffened panel, the I-core sandwich panel

boasts excellent performance in fatigue resistance,

crashworthiness, explosion impact resistance, vibra-

tion & noise reduction, etc. [1], thus attracting in-

creasing attention in marine engineering. For exam-

ple, metal sandwich structures have been applied to

the antenna platform [2] of US Navy warships and

the deck [3] of German ferries and cruise ships.

Some scholars have studied the strength of metal

sandwich panels. For instance, Li et al. [4] used a

nonlinear finite element (FE) method to compare

the ultimate bearing capacity of I-core sandwich

panels, U-core sandwich panels, and stiffened pan-

els under uniaxial compression, providing a refer-

ence for the study of the in-plane bearing perfor-

mance of metal sandwich panels. Hong et al. [5], re-

sorting to a nonlinear FE method, simulated the ulti-

mate bearing capacity of metal sandwich panels un-

der combined loads, proving the better ultimate
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bearing capacity of the designed metal sandwich

panel than that of the traditional stiffened panel.

Wang et al. [6] studied the in-plane connection struc-

ture of a sandwich panel from the aspects of model-

ing method, element type, mesh size, loading rate,

initial defects, etc. Kozak [7] presented and com-

pared the results of a test example and numerical

simulation of a steel sandwich panel under an in-

plane load, concluding that the cross-sectional geo-

metric properties of the metal sandwich panel have

a significant influence on its response under an in-

plane load. Zhu et al. [8] proposed and verified a sub-

model method for calculating the strength of the

panel structure of the sandwich deck, the results of

which confirmed its application in the accurate eval-

uation of structural strength characteristics.

Recent years have seen the widespread use of ar-

tificial neural networks in research areas such as

structural reliability and strength prediction thanks

to their high parallelism and fault tolerance. Mesba-

hi et al. [9] adopted an artificial neural network meth-

od to predict the formula for the ultimate strength

of a stiffened plate under uniaxial compression and

compared it with the existing empirical formula,

finding that the result obtained by this method was

more accurate than that obtained by the empirical

formula. Wang et al. [10] used a neural network meth-

od to analyze the ultimate strength of a steel plate

with random pitting damage, the result of which

showed that the maximum relative error between

the prediction result and the result of the FE analy-

sis was less than 10%. Ahmadi et al. [11] used artifi-

cial neural network to predict the ultimate strength

of a corroded steel plate with central longitudinal

cracks and obtained the equation for ultimate

strength prediction under different geometric and

physical conditions. Tohidi et al. [12] built a new ef-

fective model with artificial neural networks to pre-

dict the buckling strength of semi-penetration bridg-

es with an I-shaped cross-section, which proved

that their method achieved a better estimation effect

than that of the code.

To sum up, despite the progress in the research

on the ultimate strength of I-core sandwich panels,

relevant evaluation needs to be further improved,

and relevant prediction formulas for the ultimate

strength of such panels under different geometric

conditions are still to be built. Therefore, focusing

on the ultimate strength of I-core sandwich panels

under different geometric conditions, this study cal-

culates and analyzes the ultimate strength of I-core

sandwich panels when they are under in-plane axial

compressional loads with the nonlinear FE software

ABAQUS and built the equation for ultimate

strength prediction by an artificial BP neural net-

work method to provide a reference for the applica-

tion of I-core sandwich panels in hull structures.

1 Nonlinear FE analysis

1.1 Geometric sizes and material param-

eters

The structure of the I-core sandwich panel inves-

tigated in this study is shown in Fig. 1, which dem-

onstrates that the panel is composed of upper and

lower face plates and an I-shaped web. Its main pa-

rameters include thickness tp of the upper and lower

face plates, web thickness tw, web height hw, web

spacing dw, width c of the I-core sandwich plate,

beam spacing a, buckling half-wave number e, and

yield strength σY, as shown in Table 1. References

[13-16] are available for the size selection ranges.

The Young's modulus E of all FE model materials is

206 GPa, and their Poisson's ratio µ = 0.3, with no

regard to the effect of material hardening. In the

subsequent analysis, three materials of different

yield strengths, which are 235, 315, and 390 MPa

respectively, are selected.

(a) Cross-section

(b) Whole model

Fig. 1 Structure of I-core sandwich panel

Table 1 Geometric sizes and material parameters of I-core

sandwich panel

Parameter Value

Thickness tp of upper and
lower panels/mm

2 500

Web thickness tw/mm

Web height hw/mm

Web spacing dw/mm

Beam spacing a/mm

Buckling half-wave number e

Yield strength σY/MPa

WEI Y W, et al. Ultimate strength prediction of I-core sandwich plate based on BP neural network 2
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1.2 Boundary conditions

The ultimate strength of the I-core sandwich panel

structure is investigated within the ranges of three

models (Figs. 2-4): longitudinal three-span model

(with actual strong members), longitudinal 1/2+1+1/2

span model (with boundary conditions instead of

strong beams), and longitudinal single-span model

(with boundary conditions instead of strong mem-

bers).

The sizes of the strong beam of a full-scale ship

are selected for the strong beam of the longitudinal

three-span model (with actual strong members)

(Fig. 2), i.e., a web height of 380 mm, a web thick-

ness of 12 mm, a face plate width of 160 mm, and a

face plate thickness of 14 mm. The boundary condi-

tions are presented in Table 2, where Ux, Uy, and Uz

are linear displacements and Rx, Ry, and Rz are angu-

lar displacements. The longitudinal boundaries of

the model are A1-A2, A1'-A2', B1-B2, and B1'- B2'

respectively. The transverse boundaries of the face

plate of the strong beam are C1-D1, C2-D2, G1-H1,

and G2-H2, and the transverse boundaries of the

web of the strong beam are E1-F1, E2-F2, J1-K1,

and J2-K2.

Strong beam

(a) Top view

(b) Side view

Fig. 2 Longitudinal three-span model (with actual strong

members)

Table 2 Boundary conditions of longitudinal three-span

model (with actual strong members)

Application range

Displacement
load

0

The longitudinal 1/2+1+1/2 span model (with

boundary conditions instead of strong beams) is

shown in Fig. 3, and its boundary conditions are

presented in Table 3. The model draws on the

boundary condition analysis method presented in

Reference [17], with the loading edge adopting

symmetrical boundary conditions and the con-

straints on the vertical displacement and the rota-

tion angle in the y direction replacing the actual

strong members. In this figure, K1-K2 and L1-L2

represent the locations of the strong beams.

(a) Top view

(b) Side view

With boundary conditions
instead of strong beams

Fig. 3 Longitudinal 1/2+1+1/2 span model (with boundary

conditions instead of strong beams)

Table 3 Boundary conditions of longitudinal 1/2+1+1/2

span model (with boundary conditions instead of

strong beams)

Displacement load

Application range

The longitudinal single-span model (with bound-

ary conditions instead of strong members) is shown

in Fig. 4, and its boundary conditions are presented

in Table 4.

(b) Side view

(a) Top view

Fig. 4 Longitudinal single-span model (with boundary

conditions instead of strong members)

3
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Table 4 Boundary conditions of longitudinal single-span

model (with boundary conditions instead of strong

members)

Application range

Displacement
load

Within the ranges of the three models, the load-

deformation curves obtained by FE analysis are pre-

sented in Fig. 5. The load value corresponding to

the highest point of a load-deformation curve is con-

sidered as the ultimate load, and the average stress

obtained by dividing the ultimate load by the cross-

section area of the I-core sandwich panel is defined

as the ultimate strength σu. In this figure, δ/L repre-

sents the ratio of the deformation length δ to the

length L of the I-core sandwich panel, σu/σY is the

ratio of the ultimate strength σu to the yield strength

σY, where L is l1, l2, and l3 in Figs. 2, 3, and 4 respec-

tively. Fig. 5 indicates that the σu/σY within the rang-

es of two models—the longitudinal three-span mod-

el (with actual strong members) and the longitudi-

nal 1/2+1+1/2 span model (with boundary condi-

tions instead of strong beams) is almost consistent.

The range of the model-longitudinal 1/2+1+1/2

span model (with boundary conditions instead of

strong members) is selected as the calculation mod-

el of this study under comprehensive consideration

of calculation accuracy and cost.

Longitudinal three-span model
(with actual strong members)
Longitudinal 1/2+1+1/2 span model
(with boundary conditions instead of strong beams)
Longitudinal single-span mode
(with boundary conditions instead of strong memebers)

Fig. 5 Comparison of load-deformation curves of I-core

sandwich panel under axial compression with the

ranges of different models

1.3 Initial geometric defects

Structures are all exposed to some initial defects

inevitably, which, however, significantly affect their

failure mode and ultimate bearing capacity. The ini-

tial deformation of the I-core sandwich panel is giv-

en in the following three forms: the initial deforma-

tion of upper and lower face plate elements, that of

core web elements, and that of the whole structure.

In this study, the MSC Patran software is adopted to

add initial defects to the stiffened panel model. Spe-

cifically, the initial deformation shown in Eq. (1) is

applied to the upper face plate, that shown in

Eq.(2) is applied to the lower face plate, that shown

in Eq. (3) is applied to the core web, and that shown

in Eq. (4) is applied to the whole structure.

（1）

（2）

（3）

（4）

In these equations,A0=0.1β2tp, where ,

is the flexibility coefficient of the panel; B0=0.001 5a;

e is the buckling half-wave number and is defined

as the smallest integer that meets the requirement

.

1.4 Convergence analysis

As for the mesh size, 1/8, 1/4, 1/2, and one time

the height of the core web are selected for analysis,

with the numerical results of the I-core sandwich

panel under different mesh densities presented in

Table 5.

Table 5 Numerical results of I-core sandwich panel with

different mesh densities

Mesh size/mm

The calculation results in the table indicate that a

reasonable result can already be obtained when the

mesh size is 1/4hw compared with that in the case of

a higher mesh density. Therefore, the subsequent

FE analysis adopts the mesh size of 1/4hw.

1.5 Simulation technique and result veri-
fication

The commercial software ABAQUS is adopted

for nonlinear FE analysis, the S4R four-node shell

element is used for modeling, and the Riks method

is employed for calculation and analysis. As one of

the iterative control methods that perform numeri-

WEI Y W, et al. Ultimate strength prediction of I-core sandwich plate based on BP neural network 4
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cal calculations most stably, efficiently, and reliably

for nonlinear analysis of structures at the moment,

the Riks method can well analyze the nonlinear pre-

and post-buckling of structures and track the buck-

ling path.

Before massive FE analysis of ultimate strength,

simulation calculation is performed according to the

existing test results of I-core sandwich panel struc-

tures [7] to verify the accuracy of the nonlinear FE

technique used in this study and the calculation re-

sults. The sizes of the simulation model are as fol-

lows: The length and width of the I-core sandwich

panel are 3 000 and 500 mm, respectively; the thick-

ness of the upper and lower face plates is 3 mm, the

height of the core web is 60 mm; the core web spac-

ing is 80 mm. An ideal elastic-plastic material with

a yield strength of 235 MPa is adopted, and the ini-

tial geometric defects described in Section 1.3 are

added to it. Under an in-plane load parallel to the di-

rection of the core web, the load-end shortening

curves of the I-core sandwich panel are shown in

Fig. 6. The peak strength error is about 3.67%, and

the end shortening error is about 0.007 5%. The FE

simulation result is in good agreement with the

curve in Reference [7], and the failure mode is also

similar to the test result (Fig. 7). Therefore, the FE

analysis method adopted here is applicable to and

reasonable for the subsequent simulation calcula-

tion.

Result in Reference[7]

FE simulation result

Fig. 6 Comparison of load-deformation curves of I-core

sandwich panel under axial compression

(a) Model test[7] (b) FE simulation

Fig. 7 Comparison of failure mode between model test and FE

simulation

2 BP neural network structure

Artificial neural networks are well equipped for

the prediction of the output of complex systems. BP

neural networks, also known as back-propagation

neural networks, are a widely used neural network

model featuring high nonlinearity and generaliza-

tion. A BP neural network can be divided into three

layers: input layer, hidden layer, and output layer,

with each containing multiple neurons. A BP neural

network processes input data through multi-layer

neurons: when a learning mode network is given,

the activation values of the neurons are transmitted

from the input layer to the output layer via the hid-

den layer, and the neurons at the output layer output

respond corresponding to the neurons at the input

layer; for a smaller error between the actual output

value and the expected one, the error signal is trans-

mitted from the output layer to the hidden layer and

then to the input layer to adjust the connection

weight, thereby ensuring a small error between the

predicted value output after training and the desired

predicted value.

The input layer of the neural network structure

adopted here contains three neurons—the face plate

slenderness ratio βp, web slenderness ratio βw, and

slenderness ratio λ of the column with one web, and

they are respectively expressed by the following

Eqs.:

(5)

(6)

(7)

(8)

where I represents the moment of inertia of the

cross-section containing one web and the related

face plates; A is the area of the cross-section con-

taining one web and the related face plates.

The output layer contains one neuron that repre-

sents the ratio of ultimate strength to yield strength

σu/σY. The commonly used training functions in

Matlab include Trainlm, Traingd, Traingdm, Traing-

da, and Traingdx. To select the proper training func-

tion, this paper, by inputting training samples, de-

cides that the hidden layer contains nine neurons,

the maximum number of training is 1 000, and the

training accuracy is 0.002 0. Then, the training re-

sults obtained with different training functions are

compared to select the optimal training function, as

5
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shown in Table 6.

The iteration accuracy in Table 6 is the mean

square error after the iterations end. And Trainlm is

the optimal training function in terms of both the

number of iterations and iteration accuracy.

One or two hidden layers and the grids under dif-

Algorithm

method

Function Number of iterations Iteration accuracy

Gradient descent method

Gradient descent method with momentum factors

Gradient descent mehtod with self-adaptive learning rate

Gradient descent mehtod with self-adaptive learning rate and momentum factors

Table 6 Performance comparison of different training functions

ferent numbers of neurons are adopted for training,

and the results are shown in Table 7. Comprehen-

sive consideration of the number of iterations and it-

eration accuracy reveals that among the 17 training

models, the optimal one is the one with a single hid-

den layer that has nine neurons. Therefore, one hid-

den layer with nine neurons is adopted for this

study.

Table 7 Performance comparison of different numbers of

hidden layers and neurons

Number of
neurons at

Hidden Layer 1

Number of
iterations

Iteration
accuracy

Number of
neurons at

Hidden Layer 2

The topological structure of the three-layer BP

neural network adopted in this study is 3-9-1, as

shown in Fig. 8. To be specific, the layers are con-

nected by weight w and bias b, with no connection

among the neurons at the same layer. The Trainlm

function is selected for training, with a maximum

number of training steps of 1 000 and a target error

of 0.002 0.

Input layer Hidden layer Output layer

Fig. 8 Structure of BP neural network for predicting the ratio

of ultimate strength to yield strength of I-core sandwich

panel

The logsig function is adopted as the transfer

function of the hidden layer, with its basic expres-

sion presented as

(9)

The input of the j-th neuron at the hidden layer is

(10)

where wij is the weight between the input layer and

the hidden layer; bj is the bias between the input layer

and the hidden layer; n is the number of neurons at

the input layer; xi is the value of the i-th input neuron.

The output of the j-th neuron at the hidden layer is

(11)

The purelin function is adopted as the transfer

function of the output layer, with its basic expres-

sion presented as

(12)

The input of the output layer is

(13)

WEI Y W, et al. Ultimate strength prediction of I-core sandwich plate based on BP neural network 6
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where wjk and bk are the weight and bias between

the hidden layer and the output layer respectively;

m is the number of neurons at the hidden layer.

The output of the output layer is

(14)

As the error signal back-propagates, the weight is

corrected layer by layer according to the error back-

ward, and the network is updated through the con-

stant updating of the weight:

(15)

(16)

where t is the number of iterations; error is the dif-

ference between the expected output and the actual

one; η is the learning rate; youtput is the output of

the neuron.

To measure the accuracy of the operation results

of the BP neural network, this study adopts the

mean square error MSE and correlation coefficient

R to evaluate the operation results:

(17)

(18)

where q is the number of data; youtputpredicted is the

output predicted value; youtputdesired is the desired

predicted value. The correlation coefficient R repre-

sents the degree of the correlation between the pre-

dicted value and the actual one, and the R value

closer to 1 indicates higher prediction accuracy of

the network. In this study, 252 groups of datasets

are adopted as the database for the operation of the

BP neural network, with some data listed in Table 8.

No. No.

Table 8 FE simulation results

7
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Before the analysis, the initial input data need to

be normalized to eliminate the influence of dimen-

sion due to the significant difference in the value

range of input data. In this study, the database is

normalized to the extent that it is within the interval

[0, 1]:

(19)

where D represents a group of series in the dataset;

min(D) is the minimum value and max(D) is the

maximum value in this group of series; xn is the val-

ue to be normalized; xn' is the normalized value.

The datasets in the database are randomly divid-

ed into training sets, validation sets, and testing

sets. They account for 70%, 15%, and 15% of the

total datasets, respectively, and are independent of

each other. Among them, the training sets are used

for model training; the validation sets are for the

validation of the trained model to test whether the

model performs well on new data and thereby to fa-

cilitate the adjustment of the hyper-parameters of

the model, and the testing sets are for the final eval-

uation of the neural network model.

3 Results and discussions

3.1 Numerical results

Table 8 lists the σu/σY of some structures in 252 I-

core sandwich panels under an in-plane axial com-

pressional load obtained by FE simulation. The ta-

ble reveals that regarding all the I-core sandwich

panels, their face plate slenderness ratio βp is be-

tween 0.67 and 3.51, their web slenderness ratio βw

is between 0.16 and 1.76, and their column slender-

ness ratio λ is between 3.00 and 9.40.

3.2 Operation results of BP neural net-

work

As described in Section 2, a topological structure

of 3-9-1 is designed for the three-layer BP neural

network, and the ultimate strength of I-core sand-

wich panels with different βp, βw, and λ under an in-

plane axial compressional load is predicted. Figs. 9-12

present the correlation between the expected value

and the predicted one of σu/σY in the training sets,

validation sets, testing sets, and all the sets respec-

tively. These figures show that all the data are locat-

ed near the x = y curve. Specifically, the correlation

coefficient R in the testing sets is 0.981 8, suggest-

ing high correlation and coincidence.

Fig. 13 shows the expected and predicted values

of σu/σY in the testing sets and the error between

them. Among the 38 groups of data in the testing

sets, the maximum error between the expected and

predicted values is 0.082 2, and the mean square er-

ror MSE is 0.001 2. This result proves that the BP

neural network structure adopted in this study deliv-

ers favorable prediction performance.

P
re

di
ct

ed
va

lu
e

of

Expected value of

Data
Fitted line
Predicted output =
expected data

R=0.982 9

Fig. 9 Correlation between the expected data and predicted

outputs of σu/σY in training sets

P
re

di
ct

ed
va

lu
e

of

Expected value of

Data
Fitted line
Predicted output =
expected data

R=0.974 3

Fig. 10 Correlation between the expected data and predicted

outputs of σu/σY in validation sets

Expected value of

Data
Fitted line
Predicted output =
expected data

R=0.981 8

P
re

di
ct

ed
va

lu
e

of

Fig. 11 Correlation between the expected data and predicted

outputs of σu/σY in testing sets

WEI Y W, et al. Ultimate strength prediction of I-core sandwich plate based on BP neural network 8
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Expected value of

P
re

di
ct

ed
va

lu
e

of

Data
Fitted line
Predicted output =
expected data

R=0.980 7

Fig. 12 Correlation between the expected data and predicted

outputs of σu/σY in all the sets

Data group

Expected value
Predicted value
Error

Fig. 13 Error between the expected data and predicted outputs

of σu/σY in testing sets

An equation for predicting the ultimate strength

of I-core sandwich panels with different βp, βw, and

λ under an in-plane axial compressional load is put

forward on the basis of the weight and error of the

BP neural network.

(20)

where

(21)

in which G can be expressed by the following for-

mula:

(22)

The values of the parameters in Eqs. (20) to (22)

are presented in Table 9, where k, j, and i represent

the k-th, j-th, and i-th neuron at the output layer, hid-

den layer, and input layer respectively.

3.3 Verification of BP neural network

model

Table 10 lists the geometric sizes of 20 I-core

sandwich panel structures used to test the BP neural

network model and the ultimate strength of these

structures under an in-plane axial compressional

load. The βp, βw, and λ of these metal sandwich pan-

el structures are all within the ranges described in

Section 3.1.

The BP neural network built above is applied to

predicting the ultimate strength of the I-core sand-

wich panels in Table 10 under an in-plane axial

compressional load, and the results are presented in

Fig. 14. This figure shows that the maximum error

between the expected value and the predicted one is

0.086 1 and the mean square error MSE is 0.001 1,

proving that favorable prediction results are

achieved.

3.4 Sensitivity analysis

As sensitivity analysis needs to be conducted to

evaluate the influence of the three variable parame-

ters of the input layer on the output, and the sensi-

tivity analysis method based on connection weights

Table 9 Values of parameters in ultimate strength

prediction equation for I-core sandwich panels

9
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is adopted [18]. The degree of the influence of the in-

put variables on the output variables can be ex-

pressed by the following formula

(23)

The relative degrees of the influences of the input

variable parameters βp, βw, and λ on the σu/σY of the

I-core sandwich panel structures under an axial in-

plane compressional load are thereby obtained and

shown in Fig. 15. Specifically, βw reports the rela-

tively lowest degree of influence of 26.87% while

βp has the relatively highest degree of influence of

39.99%.

4 Conclusions

In this study, the ultimate strength of 252 I-core

sandwich panel models under an in-plane axial com-

pressional load is calculated and analyzed with the

nonlinear FE software ABAQUS, and an equation

for ultimate strength prediction is built by an artifi-

cial BP neural network method. The following con-

clusions are reached for the sizes of the examples

calculated in this study:

1) Compared with the results of nonlinear FE cal-

culation, the ultimate strength predicted by the BP

neural network method has a mean square error

MSE of 0.001 2, a correlation coefficient R of

0.981 8 respectively, and a maximum error of no

more than 10%, indicating favorable prediction per-

formance.

2) The web slenderness ratio βw has the relatively

lowest degree of influence on the I-core sandwich

panel structures, is 26.87%, whereas βp has the rela-

tively highest degree of influence, is 39.99%.

3) An equation for predicting the ultimate

strength of I-core sandwich panels under an in-

plane axial compressional load is put forward on

the basis of the weights and biases of the designed

neural network structure, and it can provide a refer-

ence for the application of I-core sandwich panels

in hull structures.
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基于BP 神经网络的 I 型金属夹芯板
极限强度预测

卫钰汶，仲强，王德禹*

上海交通大学 海洋工程国家重点实验室，上海 200240

摘 要：［目的目的］针对过去对 I 型金属夹芯板的极限强度评估不完善的问题，提出一种采用 BP 人工神经网络的

方法来定量确定各相关参数对 I 型金属夹芯板极限强度的影响。［方法方法］首先，采用非线性有限元法研究 I 型

金属夹芯板在面内轴向压缩载荷条件下的极限强度；然后，构造 BP 神经网络以对不同面板柔度系数 βp、腹板柔

度系数 βw和梁柱柔度系数 λ下 I 型金属夹芯板的极限强度进行预测；最后，提出采用人工神经网络权值和偏置

法预测 I 型金属夹芯板极限强度的公式。［结果结果］ 针对所计算的算例尺寸，显示采用 BP 神经网络方法的极限

强度预测的均方差 MSE 和相关系数 R 分别为 0.001 2 和 0.981 8，所构建的神经网络模型具有较好的预测精度，

最大误差不超过 10%。［结论结论］所得结论可为 I 型金属夹芯板在船体结构中的应用提供参考。

关键词：I 型金属夹芯板；BP 人工神经网络；极限强度；非线性有限元法；预测
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