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Abstract: [Objectives] The performance of unmanned surface vehicles (USVs) is defined as the ability to complete

specific tasks in specific environments within a given time scale as a result of the cooperation of multiple technical

aspects. However, the traditional optimization method that focuses on a single part of the system provides a limited

effect on improving the performance of USVs. [Methods] For the features of an autonomous system of USVs, two

main forms of the intelligent evolution of USVs are proposed from the perspective of algorithms: the evolution of

algorithm functions and the evolution of algorithm parameters. In this case, a machine learning-based intelligent

evolution method is proposed. An automatic USV control system that satisfies the requirements of intelligent

evolution is then designed and tested in a sea trial. [Results] The obstacle-avoidance task in the sea trial proves the

capability and feasibility of the proposed method. [Conclusions] The machine learning-based intelligent evolution of

USVs is an effective way to continuously improve the performance of USVs, making it a worthy research topic with

high application value.
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0 Introduction

With the penetration and application of artificial
intelligence in marine equipment, intelligent marine
equipment and systems represented by unmanned
surface vehicles (USVs) have ushered in unprece-
dented development. They have been applied to wa-
terway transportation, marine mapping, and mili-
tary operations ", Unlike traditional equipment
based on human-machine interaction, USVs are the
equipment whose functions are essentially defined
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by software. The problems of critical technologies
of the USV autonomous system in practice, such as
information perception, planning, decision-making,
and motion control, have been gradually recog-
nized. Thus, the concept of "intelligent evolution of
USVs" was proposed .

The performance of USVs is defined as the abili-
ty to complete specific tasks in specific environ-
ments within a given time scale, which is a measure
of the USV value *31. Therefore, the target of the in-
telligent evolution of USVs is to improve the equip-
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ment performance. The intelligent evolution of
USVs is to achieve continuous iterative optimiza-
tion of autonomous systems by learning the mea-
surement data in the operation 1. However, com-
pared to unmanned equipment such as unmanned
aerial vehicles and unmanned vehicles, the autono-
mous system of USVs faces greater challenges in
learning and iteration.

The first challenge is that the USV system is
complicated. Similar to systems of other complex
equipment, the USV system inherits a large number
of subsystems, which is a "system of systems". The
performance of a single sub-function of the USV
system is not improved linearly with the growth of
the USV performance. Thus, the evaluation of USV
performance is characterized by lack of informa-
tion, multi-level, and strong coupling. For example,
the output of the perception system significantly af-
fects the performance of the planning algorithm,
which in turn places higher requirements on the
control system.

The second one is that the operating environment
of USVs is complex. In the sea, the external ran-
dom loads such as wind, waves, and currents faced
by USVs are mostly in the same magnitude as the
control force of hulls. Under severe conditions,
there may even be situations where the external
loads are much larger than the control force of hulls 7).
At present, after most of the USV control algo-
rithms are put into application, their control parame-
ters should be adjusted manually according to the
characteristics of the operating environment. This
has been widely discussed in the ship control field,
and some methods have been developed. However,
in the unpredictable marine environment, it does
not work if we only rely on self-adjustment for con-
trol algorithm parameters of USVs. For example,
the parameters of the filtering algorithm in the im-
age recognition and pre-processing should be
changed at any time according to the weather and
light conditions. The step size of the path planning
algorithm should be adjusted according to the opera-
tion range and obstacle distribution.

To address the above problems, this paper argues
that the intelligent evolution of USVs should focus
on the evolution of algorithm functions and algo-
rithm parameters in the USV autonomous system,
and proposes the process of the corresponding intel-
ligent evolution method. On this basis, we try to
give an evolvable control structure of the USV au-
tonomous system. At last, with the obstacle-avoid-

ance algorithm of USVs as an example, we will ver-
ify the feasibility and effectiveness of machine
learning methods in the intelligent evolution of
USVs in combination with a real sea trial.

1 Overview of intelligent evolution
methods of USVs

After the preliminary design and construction,
the hardware equipment and performance of an
USV have been basically confirmed. Therefore, the
intelligent evolution of USVs should focus on the
evolution of algorithm functions and algorithm pa-
rameters in the autonomous system. Currently,
many research methods have been developed in
terms of algorithm functions of the autonomous sys-
tem. For example, in terms of perception, there are
image recognition algorithms such as the semantic
segmentation algorithm and the supervised learning
algorithm B, In terms of planning, there are path
planning algorithms such as A*, D*, and rapidly-ex-
ploring random tree (RRT) algorithms 1. In terms
of control, there are navigation control algorithms
such as the proportional integral derivative (PID)
control and the active disturbance rejection control
(ADRC) 19 The evolution of algorithm functions
refers to expanding functions of the USV autono-
mous system through construction, invocation, or
combination of functions, so as to provide the possi-
bility for USVs to complete more complex tasks. In
terms of algorithm parameters of the autonomous
system, artificial intelligence methods have also
been widely used for parameter adjustment in per-
ception, planning, and control algorithms [ 12,
Most of the current adjustment methods of algo-
rithm parameters are based on accurate quantitative
objective functions. They have achieved some re-
sults at the simulation level or at the measurement
stage, but there is no in-depth study on the prob-
lems considering the coupling effect between algo-
rithms and the environmental influences. The evolu-
tion of algorithm parameters means making adap-
tive systems adapt to current marine environments
and task requirements through collaborative adjust-
ment of algorithm parameter sets, so as to continu-
ously improve the USV equipment performance.

Then, the application process of the intelligent
evolution method of USVs is shown in Fig.1.

The manual evolution stage of USVs means that
at the early design stage of the USV autonomous
system, designers should establish algorithm func-
tion libraries based on standardized inputs and out-



LOU J K, et al. Intelligent evolution method for obstacle-avoidance algorithm of unmanned surface vehicles in
real sea trial based on machine learning

Confirm the evolution method

Establish a training set including

based on task targets

Establish the system algorithm
library

Pre-adjust system algorithm

prior and posterior knowledge

Select appropriate algorithms
according to practice

Conduct the evolution of system

Add new samples

—>| Carry out tasks and keep online tests I:

Online evaluate the objective
function

parameters algorithm parameters
'L based on machine learning -
Select algorithms according

to tasks and environment

| v

| Develop a real sea trial

Develop a real sea trial

B T

i |

Self-adjust system algorithm |

Evaluate the objective function
manually

Evaluate the objective function
autonomously

parameters

y

Acquire N groups of samples as |-
a prior training set

Satisfy task
requirements or not?

Send information to the shore-based

decision-making center
T

v v '

| Can be used in practice

Process of manual evolution

Process of autonomous evolution

Stop tasks Manual remote Change task [~
and retum to control is requirements
the base involved

Process of online evolution

Fig. 1

puts to enrich the reserve of algorithm libraries of
the USV autonomous system and make a prelimi-
nary adjustment for algorithm parameters based on
real sea trials. The USV equipment performance
can be evaluated manually. The evolution at this
stage can help designers to know the performance
and applicability range of algorithms, and provide a
referenced classification of parameter sets, feasible
parameter domains and objective functions of evo-
lution for subsequent autonomous evolution and on-
line evolution stages.

The autonomous evolution stage of USVs refers
to that USVs carry out many standard tests in the re-
al sea sites, and autonomously adjust algorithm pa-
rameters in different marine environments accord-
ing to autonomous evaluation results of equipment
performance by objective functions ['3. After the
evolution at this stage, the USVs will form a group
of algorithm functions and parameter sets that can
cope with the characteristics of many kinds of loads
in the marine environment and accomplish tasks.

The online evolution stage of USVs refers to con-
ducting continuous dynamic tests and evaluation for
the USV autonomous system in the process of prac-
tical tasks. If the system judges that the current al-
gorithm function and parameters can meet the task
requirements, it will accept the reduction of equip-
ment performance to a certain degree, so as to de-
crease the impact of frequent replacement of algo-
rithms or change of system parameters on the sys-
tem stability. When the equipment performance de-
creases to a certain threshold and is-judged to be un-

Application process of USV intelligent evolution

able to meet the task requirements, the system will
adjust the algorithm parameters or select other algo-
rithm functions according to accumulated online
test data and previous training sets. Due to the limi-
tation of USV hardware performance, the influence
of external loads may exceed the adjustment range
of USVs in some extreme weather. In this situation,
the system can provide timely feedback and choose
to return, manually remote control or change the
task requirements according to shore-based deci-
sions, so as to reduce the loss in severe situations.

2 Structure of evolvable USV con-
trol system

The evolvable USV autonomous system (see
Fig.2) is an intelligent system that can select differ-
ent algorithm functions and adjust parameters to im-
prove the USV equipment performance for different
overall task requirements. The data flow of the sys-
tem is an object-oriented process, and the algo-
rithms can be defined as processing methods for
corresponding data objects. Thus, changes in algo-
rithms do not influence the transfer of data objects,
which ensures that the system operates effectively.

The evolvable USV autonomous system includes
four subsystems, the evolver, the perceptron, the
planner, and the actuator. It demonstrates different
performances depending on overall tasks and the

marine environment 714,

The evolver parallelly
acts on the perceptron, the planner, and the actuator.
It uses the data generated by the subsystems for

tests and evaluation of the USV equipment perfor-
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mance and as a reference for the individual optimi-
zation of subsystem algorithms and uses the overall
performance in tasks as the evolution direction of
the system. Changes in algorithm functions and ad-
justment of parameters do not affect the architecture
and operation mode of the system. The evolutionary
objective of the USV autonomous system is to im-
prove the USV equipment performance, namely to
improve the ability of USVs to complete specific
tasks in specific environments within a given time
scale.

The ability of USVs to complete specific tasks is
influenced by the coupling of multiple levels and
multiple technical nodes. As shown in Table 1, the
index level refers to the hardware base of USVs,
such as the propulsion power, the fuel consumption,
the configured calculation power, and the optical
image resolution. The optimization at this level is
mainly targeted at the preliminary design and con-
struction level of USVs. The behavior level means
the performance of USV hardware under a series of
temporal orders, such as the technical radius of
ships, the braking distance, and the heaving acceler-
ation. The optimization at this level is mainly aimed
at the frequency and manner in which orders are
sent. The function level refers to the performance of
different intelligent algorithms, such as the image
recognition algorithm and the path planning algo-
rithm. The optimization at this level mainly focuses
on algorithm functions and algorithm parameters.
The task level refers to the equipment performance
of USVs when they are used in practice. This level

is the coupling result of influences of multiple tech-
nical nodes in the first three levels based on the de-
sign architecture of the system. It can be seen that
most traditional optimization methods for autono-
mous systems are aimed at single nodes, such as re-
placing the power equipment, changing the control
mode, and optimizing the control algorithm. There
is no comprehensive consideration of equipment
performance in the optimization process.

Currently, many studies focus on independent op-
timization of subsystems but fail to pay enough at-
tention to the interaction among subsystems. For ex-
ample, the recognition results of the perceptron are
necessary information for the planner. The planning
results (such as planning path points) affect the pa-
rameters of the auto-steer in the controller, which in
turn affects the recognition accuracy and the recog-
nition time of the perceptron. Therefore, the intelli-
gent evolution of a well-designed USV autonomous
system should take full consideration of coupling
among different parts based on independent optimi-
zation of algorithms in each part to conduct learn-
ing iteration for algorithms [°l. Thus, continuous im-
provement of the USV equipment performance is
achieved.

The evolvable USV autonomous system can
make full use of the measurement data in the sea ar-
ea, and optimizes the subsystems and equipment
performance based on the established quantitative
algorithm of the objective function. Its advantage
lies in that based on the independent optimization
of algorithms in previous subsystems, the system
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Table 1 Hierarchical division and corresponding features of technical nodes for USV autonomous system
Envi t
Level Example Form Test method System attribute nylronmen
influence
. . L . Hard level with singl
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Behavior level Tactical radius Physical quantity Objective calculation ardware fevel wi .smg ¢ Little
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Function level Image recggnition Physical quantity ObjecAtiveA calculat%og and Sgb-system level withA Large
function and score subjective description multiple algorithms working
et inti
Task level Patrol task Score Subjective description and Overall system level Significant

objective calculation

can continuously improve the algorithm characteris-
tics with the coupling relationship according to the
complex influence of the marine environment and
overall task requirements. Thus, better equipment
performance can be obtained.

3 Example of intelligent evolution
of obstacle-avoidance algorithm
of USVs

The primary problem faced by the intelligent evo-
lution of USVs, which are equipment defined by al-
gorithmic software, is that there is no quantifiable
mathematical representation of the relationship be-
tween algorithms and equipment performance. It is
difficult to decompose the evolutionary objective
function into sub-algorithms by analytical methods.
This problem belongs to the performance evalua-
tion field of intelligent unmanned equipment 3],
Therefore, in order to quickly verify the feasibility
and effectiveness of the proposed method, our re-
search team selected the local path planning algo-
rithm, RRT, whose evolutionary objective function
is clear, to carry out example research on the intelli-
gent evolution of USVs in the sea area.

3.1 Performance evaluation function of
the path planning algorithm

The computational performance of a local path
planning algorithm, such as time complexity and
space complexity, is determined by the structure of
the algorithm itself. In the case of the RRT algo-

rithm, for example, its impact on the equipment per-
formance is reflected in the variation of the step
size and the target deviation probability of the algo-
rithm, so they can be selected as parameters to be
evolved Bl In the real sea trial, the final perfor-
mance of the path planning algorithm is influenced
by the characteristics of the USV control system
and environmental loads. The transfer of motion
state signal is shown in Fig.3.

According to the map information given by the
USYV sensing algorithm, after the path planning al-
gorithm gives the desired route information 7(x, y),
the USV motion state at each sampling period is re-
lated to the motion state at the last moment, the con-
trol order at the last moment, environmental loads
and delay of USV software and hardware systems.
The motion state s of USVs is directly measured by
the inertial navigation system and expressed by the
position, the velocity, and the acceleration, namely,

s =[xy zu v, naBy. ] (1)
where x, y, and z indicate the position information;
u, v, and r represent the velocity information; a, S
and y denote the acceleration information. Mean-
while, the motion state can also include high-order
quantities such as acceleration and angular accelera-
tion.

The control algorithm of USVs can be indicated
as the mapping of the control quantity e, which is
generated based on the expected route and the mo-
tion state s, namely,

e=f.(s,T(x,y) (2)

Map information

Sensing algorithm Planning algorithm

Environmental load

of USV of USV
Expected route
Control
Motion state of Control algorithm | quantity | Actuator of Hull of Motion state of USV
USV at the current of USV usv 7 Usv at the next moment
moment

Fig:3 Transfer model of motion state quantities of USV
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where f, is the mapping of the control algorithm
from the motion state to the control quantity. The
control quantity e varies with the USV power sys-
tem.

In this case, in consideration of the precondition
of virtual obstacles, the expected route is a fixed
value in a single obstacle-avoidance task.

Moreover, the marine load is generally difficult
to be measured. Fossen et al. [l used the probability
distribution method to describe it, and the environ-
mental load is given by

Jaw(PDF(wy, A), 5) (3)
where f.,, is the predicted value of the external load
at the current motion state; PDF(w,, A) is the proba-
bility distribution of the wave frequency w,, and the
wave height 4 at the current marine situation. Under
specific sea conditions, the probability distribution
can be considered unchanged in a period, namely
that this function is time-invariant.

Then, in the actual operation of the USV system,
the communication and computational delays be-
tween algorithmic functional modules are deter-
mined by the system design and algorithms, which
are generally constant. The delays of software and
hardware systems in the marine enviroment are
mainly reflected in the delay of the execution time
of the actuator. For example, the steering time is re-
lated to the rotating size of the steering engine.
Therefore, the impact of delay of the USV system
on the motion state can be expressed as a function
related to the control quantity e, namely,

Ja(s) = gal fo(8)) = gale) (4)
where f; is the mapping from the motion state to the
delay of the system; g, is the mapping from the con-
trol quantity to the system delay. Therefore, the
change in the motion state of the USV in a single
obstacle-avoidance task in the specific marine envi-
roment can be represented as a convolution of mul-
tiple influencing factors' mapping functions, namely,

Sirny = (fo e * f)Su (5)
where s,y and s, denote the motion states of the
USV at two consecutive measurement moments, re-
spectively.

Thus, the overall performance of the USV mo-
tion state can be obtained, which includes many
kinds of information such as the performance of the
control algorithm, the environmental load, and the
system delay. The obstacle-avoidance performance
of USVs can be evaluated from the USV trajectory
(position, velocity, and other information) and the
motion stability. (angular velocity-and other infor-

mation).

From the above analysis, the obstacle-avoidance
performance of the USV in a single task in the spe-
cific marine enviroment can be measured by the
USV motion state during the test. The unknown fac-
tors such as the USV's characteristics and the envi-
ronmental load have been coupled in the changes of
the motion state. In addition, as the motion state is
the most easily monitored and recorded system in-
formation in practice, the performance evaluation
based on the analysis of the motion state is extreme-
ly important.

In this case, limited by the measurement data, the
research team selected two indexes based on the
task requirements, the path length and the path
smoothness, to generate the objective function for
the algorithm evolution. The path length is used to
examine the efficiency of the planned obstacle-
avoidance path by the path planning algorithm in
the case of a given starting point and end point. A
smaller path length means that the USV can avoid
obstacles in the map more effectively. The path
smoothness affects the requirements of the planned
path on the USV maneuverability. Smaller path
smoothness means that the generated path requires
less for the hydrodynamic performance of the USV
and has higher stability in more complex environ-

ments. The two can be calculated as

n
Elength = E AL:

i=1

n—1

Bt = Y, IAG)
i=1

where n is the number of path segments; AL, indi-

(6)

cates the length of No. i path; A#, is the change in
the angle between No. i path and No. i+1 path. For
the test results in one group, the test indexes are
mapped to the range of [0, 100] by the normaliza-
tion method.

The traditional optimization method for the path
planning algorithm is to find the algorithm parame-
ters that minimize the values of the two expressions
based on the two objective functions in Equation
(6). Although this method can improve the perfor-
mance of the algorithm to a certain extent, it does
not pay enough attention to the coupling effect be-
tween the generated path and the trajectory tracking
algorithm as well as the perturbation of external
loads in the marine enviroment.

In the real sea trial, the coupling effect between
the path planning and the trajectory tracking algo-
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rithm is reflected as the actual trajectory of the USV
in the marine enviroment based on the given
planned path. Therefore, the performance of the
path planning algorithm can be indicated by the tra-
jectory length and the accumulated heading change
of the USV accordingly, and it is given by

Frea ,I.dl

length —

fredd :f|d9| (7)

smooth
where Eia and E°2 respectively indicate the tra-
jectory length and the accumulated heading change
in the real sea trial; d/ and d@ are the differential
forms of the path length and the angle change, re-
spectively.

The randomness of the RRT algorithm, namely
that there may be different solutions for each set of
hyperparameters values, and the limited real sea tri-
al resources are taken into consideration. In the pro-
cess of path planning by the algorithm, we use
Equations (6) and (7) to analyze the planning re-
sults and select the one with the best effect among
several actually generated sets of paths as the
planned path under this set of hyperparameters for
the real sea trial.

After being processed by the normalization meth-
od, the objective function of the local path planning
algorithm in the real sea trial is given by

E* =< @, Eqoma > (8)

> is the dot product of the vector
real
lzngth

Max ( Er’cul ?

length

where <o, E

normal

(0] and E Enormal =100 x

normal>

T
real
smooth

MaX ( Ereal )

smooth

) ; o is the weight coefficient vector.

The value of @ can be set manually, which is influ-
enced by the design requirements of the tested USV
and is a subjective quantity.

From the objective function of the path planning
algorithm, it can be known that a smaller value of
the objective function leads to a better performance
of the path planning algorithm in the real sea trial.

3.2 Evolution of algorithm parameters
based on the surrogate model

Due to the complexity of the actual environment,
the relationship between the system parameters and

the USV equipment performance can be generally
considered as a multi-modal function. It is difficult
to fit the relationship by traditional linear or nonlin-
ear regression methods. Meanwhile, a single test is
time-consuming and complex, and the acquired da-
ta samples are small in size. In view of this, by us-
ing the principle of experiment design, the research
team selected scattered data points in the high-di-
mensional parameter space, so as to reduce the re-
quirement for data in the marine enviroment !5,
Then, the machine learning method represented by
the Gaussian regression process (GRP) is used to re-
place the relationship between the objective func-
tion and the optimal parameters in the optimization
algorithm with a surrogate model ['2%, Then, the
parameter set which can achieve the optimal equip-
ment performance is obtained by optimization algo-
rithms such as the rapid traversing method or the ge-
netic algorithm.

The evolution process of the algorithm parame-
ters is shown in Fig.4. On the one hand, the fitting
accuracy of the Gaussian surrogate model is influ-
enced by the distribution of sample sets. On the oth-
er hand, the models of its kernel function, mean
function, and likelihood function all affect its con-
vergence accuracy. For different parameter sets, an
appropriate mathematical model is selected by con-
sidering the characteristics of the physical process
during the operation. This is beneficial to improv-
ing the reliability and accuracy of the evolution of
algorithm parameters.

Moreover, for the parameter adjustment in prac-
tice, it is not difficult to determine the definition do-
main of an available parameter, but it is difficult to
confirm that the parameter set which achieves the
optimal performance must fall within the selected
definition domain. Therefore, the evolution of algo-
rithm parameters based on the surrogate model
mainly addresses the problem of finding the opti-
mal parameter set in the definition domains and
their neighborhoods which are formed based on the
data distribution of the sample set.

3.3 Design of real sea trial

The "Zhuimeng-3" USV was used to develop the

Design parameters
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testing range

Construct sample
points of the
training set

!

Construct real sea
trial and evaluate
task performance

Learn a surrogate Evaluate optimal Determine
t h .
model'(such as the parameters (§uc evolution
Gaussian surrogate| as a genetic
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Fig. 4 Eyolution process of algorithm parameters based on a surrogate model

Add sample points of optimal parameter estimation to the
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test, which is about 7 m long and has a planned
speed of 8-10 kn. Its photograph is shown in Fig.5.

Fig. 5

"Zhuimeng-3" USV

The "Zhuimeng-3" USV includes a power supply
system, an actuator system, a monitoring system, a
sensing system, a computing system, and a network
system. The power supply system includes genera-
tors and storage batteries; the sensing system in-
cludes maritime radars, the camera cluster, and
anemographs; and the actuator is the Mercury out-
board engine. As the control algorithm of trajectory
tracking is limited by the physical characteristics of
the outboard engine, this USV has lower control ac-
curacy and higher requirements on the results of the
path planning algorithm than traditional screw-rud-
ders or pumps. Moreover, the test sea area is often
at sea state 3-4. This sea state means a large exter-
nal load for the tested USV. Therefore, this has a
high practical value for the parameter evolution of
the path planning algorithm.

In the test, the navigational speed is about 8 kn.
As a single test does not exceed 30 min, the size of
the selected map is 2 400 m x 2 400 m. In the algo-
rithm, the number of actually used grids is 600 X
600. Thus, the length of a single grid corresponds to
4 m length in the map. With the top left corner of
the grid as the zero point, the positions and the radii
of obstacles (the expansion safety radius is 15 m)
are shown in Table 2.

Table 2 Location of virtual obstacles and corresponding
avoidance radii

Center point of Avoidance Center point of Avoidance

an obstacle/m radius/m an obstacle/m radius/m
(—180,180) 80 (—370,400) 50
(—310,250) 35 (—200,475) 95
(—150,330) 30 (—450,220) 95

The starting and end points of the path planning
are set as (100 m, 100 m) and (480 m, 500 m), re-
spectively. The map of the virtual obstacles is
shown in Fig.6.

3.4 Results of real sea trial and analysis

In the simulation test of the preliminary algo-

x/m
0 100 200 300 400 500 600

100 +

: O
= 300 ¢
400 _ O

500 +

600 -

Fig. 6 Setting of virtual obstacles

rithm, the ranges of the target deviation probability
and the step size are set as [0.1, 0.3] and [150 m,
180 m], respectively.

According to the design principle of the test, nine
sets of parameters are used as the sample points in
the real sea trial. Let the weight vector w =(0.5,0.5)™.
The parameters and the test results of the real sea
trial are shown in Table 3 and Fig.7.

Table 3 Path results in a real sea trial

Step size Target de'\fiation Path Path angle/ (X;L‘l;isi
D/m probability P length/m ©) function
150 0.1 739.274 3.687 79.001
150 0.2 703.877 3.723 77.329
150 0.3 748.569 3.656 79.226
160 0.1 753.047 5.035 93.177
160 0.25 654.352 3.719 74.450
170 0.05 648.220 3.406 70.990
170 0.15 636.477 3.118 67.457
170 0.25 643.532 3.430 70.960
180 0.25 872.046 3.976 89.484

According to the above data, the Gaussian model
is used to establish the surrogate model of the rela-
tionship between parameters and scores ['%1, and the

kernel function is set as

k(x,x') = o*exp (— 2‘152 (x—x/)z) (9)

where ¢ and ¢ are respectively the predicted vari-
ance and the scale factor; x and x' are the input pa-
rameter sets. This kernel function suits the physical
process in which output results vary with parame-
ters smoothly U7l Due to the randomness of the
RRT algorithm, it can be assumed that the scores of
the real sea trial will vary smoothly with the two pa-
rameters. Meanwhile, the convergence condition of

the corresponding surrogate model; is to adjust the
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Fig. 7 Comparison between planned paths and paths in a real sea trial
values of ¢ and ¢ to minimize the loss function. In the real sea trial vary with the algorithm parame-

other words, the corresponding predicted values
should satisfy

)’oplmlal'xy = arg minRLO'.guess|xw)

(10)
where x. is the parameter pair that waits to be pre-
dicted; yy. indicates the corresponding predicted
value; R, is the expected loss function; arg min de-
notes calculating the predicted value with the mini-
mum value of the loss function. The loss function

used in this test is given by
Ri=D g =y )’ (11)
where y* is the true value. R, is the quadratic sum
of the difference between the predicted value ygyes
and the true value y*. The predicted model which
makes this value minimum is the required parame-
ter-score mapping model.
For the Gaussian model in which the test data of

ters, its regression results are shown in Fig. 8(a),
where "+" denotes the measurement data and the
curved surface is composed of fitting data. The
trend of the loss function varying with the number
of iterations is shown in Fig.8(b). For the optimal
RRT algorithm in the map and marine enviroment,
which is obtained by fitting the Gaussian model, the
parameters are the step size D = 164 m and the tar-
get deviation probability P = 0.05.

The obstacle-avoidance path generated by this pa-
rameter set is shown in Fig.9. According to the actu-
al test results, the sample parameter sets for the test
can meet the requirement in practice and are able to
complete the obstacle-avoidance task. The results
obtained by the surrogate model are the parameter
set that performs better in the corresponding defini-
tion domains of parameter sets in the sample space.
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Fig.8 Fitting data of Gaussian surrogate model

Thus, the parameter-evaluation mapping generated
based on the surrogate model already contains the
comparison results between the USV performance
of the optimal parameter set and that of an available
parameter set that is randomly selected. By expand-
ing the number of samples and adding the circula-
tion test, we can more accurately generate the opti-
mal obstacle-avoidance parameters of the "Zhui-

meng-3" USV in the test sea area.

x/m
0 100 200 300 400 500 600

Planned path
100 +

200 +

400 +

500

600 L

Fig.9 Obstacle-avoidance path generated by the RRT

algorithm based on the optimal parameter set

In addition, considering the influence of the pa-
rameters of the RRT algorithm on its calculation re-
sults, the selection trend of the optimal step size is
reflected in the search of boundaries of obstacle-
avoidance areas as much as possible in the limited
space. The path in Fig.9 is close to being tangent to
the circle areas whose radii are the avoidance radii
of obstacles after expansion. This indicates that the
space is searched as much as possible. The selection
trend of the target deviation probability is reflected
in the divergence of the path search in the space. In
the above obstacle map, there are many obstacles
between the starting point and the end point, and
the space between obstacles is small. The reason-
able reduction of the target deviation probability
helps the planning algorithm to search the space
and thus search for high-quality paths in a narrow
areca. It can be seen that the Gaussian surrogate
model can effectively fit the changing trend of the
corresponding algorithm performance in the marine
enviroment on the premise of limited data sets. The
optimal parameter values generated by it are inter-
pretable and in accordance with practice.

4 Conclusion and prospects

The marine environment is a huge complex and
stochastic system, and USVs are composed of mul-
tiple complex subsystems. This leads to the fact that
the USV equipment performance is the coupling re-
sult among multiple complex systems. Aiming at
the above difficulties, this paper combined the algo-
rithm characteristics of the USV autonomous sys-
tem and proposed two main forms of the intelligent
evolution of USVs from the perspective of intelli-
gent algorithms: One is the evolution of algorithm
functions and the other is the evolution of algorithm
parameters. On this basis, with the obstacle-avoid-
ance algorithm as the example, this paper prelimi-
narily verified the feasibility and effectiveness of
the proposed method in improving the equipment
performance of USVs based on the test results in
the real marine enviroment.

Limited by the insufficient understanding of the
generation mechanism of intelligent combat effec-
tiveness of unmanned equipment and the imperfec-
tion of testing technology in the real marine enviro-
ment, this study is still in the experimental explora-
tion stage. In the future, we will develop more ex-
tensive and in-depth research aiming at the intelli-
gent evolution mechanism of unmanned marine
equipment-and testing technology in the real marine
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enviroment. The following research suggestions are
proposed for the intelligent evolution of USVs.

The first one is the study on quantitative models
of objective functions for USVs' intelligent evolu-
tion. As the USV equipment performance is the re-
sult of a complex environment coupled with multi-
ple algorithms, it is difficult to describe objective
functions of the intelligent evolution by analytical
methods. Therefore, it is the premise for realizing
intelligent evolution to propose quantitative models
of objective functions of the intelligent evolution
based on the generation mechanism of intelligent
combat effectiveness of unmanned equipment.

The second one is the study on the construction
method of machine learning models for USV's intel-
ligent evolution. The underlying layer of machine
learning is composed of various linear or nonlinear
mathematical regression models, which are also
called hyperparameters in machine learning. Many
studies have proved that different hyperparameters
show completely different results when facing dif-
ferent learning objects. Therefore, exploring the in-
teraction mechanism between these hyperparame-
ters and the USV equipment performance and fur-
ther proposing the construction method of machine
learning models is the path to realize intelligent evo-
lution.

The third one is the study on efficient acquisition
methods for learning data of USVs' intelligent evo-
lution. The test of large and medium-sized USV in
the real marine enviroment is costly and time-con-
suming, and a single test has a complicated process.
Researchers should reasonably conduct representa-
tive tests according to the characteristics of USV
systems. A large number of high-quality learning da-
ta sets are the raw material for USVs' intelligent
evolution. Thus, it is the guarantee for the realiza-
tion of intelligent evolution to study the formulation
of standard testing subjects as well as the collection
and processing of test data based on the construc-
tion of test sites for marine unmanned equipment in
the real marine enviroment.
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