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0 Introduction

With the penetration and application of artificial

intelligence in marine equipment, intelligent marine

equipment and systems represented by unmanned

surface vehicles (USVs) have ushered in unprece-

dented development. They have been applied to wa-

terway transportation, marine mapping, and mili-

tary operations [1-3]. Unlike traditional equipment

based on human-machine interaction, USVs are the

equipment whose functions are essentially defined

by software. The problems of critical technologies

of the USV autonomous system in practice, such as

information perception, planning, decision-making,

and motion control, have been gradually recog-

nized. Thus, the concept of "intelligent evolution of

USVs" was proposed [1].

The performance of USVs is defined as the abili-

ty to complete specific tasks in specific environ-

ments within a given time scale, which is a measure

of the USV value [4-5]. Therefore, the target of the in-

telligent evolution of USVs is to improve the equip-
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ment performance. The intelligent evolution of

USVs is to achieve continuous iterative optimiza-

tion of autonomous systems by learning the mea-

surement data in the operation [6]. However, com-

pared to unmanned equipment such as unmanned

aerial vehicles and unmanned vehicles, the autono-

mous system of USVs faces greater challenges in

learning and iteration.

The first challenge is that the USV system is

complicated. Similar to systems of other complex

equipment, the USV system inherits a large number

of subsystems, which is a "system of systems". The

performance of a single sub-function of the USV

system is not improved linearly with the growth of

the USV performance. Thus, the evaluation of USV

performance is characterized by lack of informa-

tion, multi-level, and strong coupling. For example,

the output of the perception system significantly af-

fects the performance of the planning algorithm,

which in turn places higher requirements on the

control system.

The second one is that the operating environment

of USVs is complex. In the sea, the external ran-

dom loads such as wind, waves, and currents faced

by USVs are mostly in the same magnitude as the

control force of hulls. Under severe conditions,

there may even be situations where the external

loads are much larger than the control force of hulls [7].

At present, after most of the USV control algo-

rithms are put into application, their control parame-

ters should be adjusted manually according to the

characteristics of the operating environment. This

has been widely discussed in the ship control field,

and some methods have been developed. However,

in the unpredictable marine environment, it does

not work if we only rely on self-adjustment for con-

trol algorithm parameters of USVs. For example,

the parameters of the filtering algorithm in the im-

age recognition and pre-processing should be

changed at any time according to the weather and

light conditions. The step size of the path planning

algorithm should be adjusted according to the opera-

tion range and obstacle distribution.

To address the above problems, this paper argues

that the intelligent evolution of USVs should focus

on the evolution of algorithm functions and algo-

rithm parameters in the USV autonomous system,

and proposes the process of the corresponding intel-

ligent evolution method. On this basis, we try to

give an evolvable control structure of the USV au-

tonomous system. At last, with the obstacle-avoid-

ance algorithm of USVs as an example, we will ver-

ify the feasibility and effectiveness of machine

learning methods in the intelligent evolution of

USVs in combination with a real sea trial.

1 Overview of intelligent evolution
methods of USVs

After the preliminary design and construction,

the hardware equipment and performance of an

USV have been basically confirmed. Therefore, the

intelligent evolution of USVs should focus on the

evolution of algorithm functions and algorithm pa-

rameters in the autonomous system. Currently,

many research methods have been developed in

terms of algorithm functions of the autonomous sys-

tem. For example, in terms of perception, there are

image recognition algorithms such as the semantic

segmentation algorithm and the supervised learning

algorithm [8]. In terms of planning, there are path

planning algorithms such as A*, D*, and rapidly-ex-

ploring random tree (RRT) algorithms [9]. In terms

of control, there are navigation control algorithms

such as the proportional integral derivative (PID)

control and the active disturbance rejection control

(ADRC) [7, 10]. The evolution of algorithm functions

refers to expanding functions of the USV autono-

mous system through construction, invocation, or

combination of functions, so as to provide the possi-

bility for USVs to complete more complex tasks. In

terms of algorithm parameters of the autonomous

system, artificial intelligence methods have also

been widely used for parameter adjustment in per-

ception, planning, and control algorithms [11–12].

Most of the current adjustment methods of algo-

rithm parameters are based on accurate quantitative

objective functions. They have achieved some re-

sults at the simulation level or at the measurement

stage, but there is no in-depth study on the prob-

lems considering the coupling effect between algo-

rithms and the environmental influences. The evolu-

tion of algorithm parameters means making adap-

tive systems adapt to current marine environments

and task requirements through collaborative adjust-

ment of algorithm parameter sets, so as to continu-

ously improve the USV equipment performance.

Then, the application process of the intelligent

evolution method of USVs is shown in Fig.1.

The manual evolution stage of USVs means that

at the early design stage of the USV autonomous

system, designers should establish algorithm func-

tion libraries based on standardized inputs and out-
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puts to enrich the reserve of algorithm libraries of

the USV autonomous system and make a prelimi-

nary adjustment for algorithm parameters based on

real sea trials. The USV equipment performance

can be evaluated manually. The evolution at this

stage can help designers to know the performance

and applicability range of algorithms, and provide a

referenced classification of parameter sets, feasible

parameter domains and objective functions of evo-

lution for subsequent autonomous evolution and on-

line evolution stages.

The autonomous evolution stage of USVs refers

to that USVs carry out many standard tests in the re-

al sea sites, and autonomously adjust algorithm pa-

rameters in different marine environments accord-

ing to autonomous evaluation results of equipment

performance by objective functions [13]. After the

evolution at this stage, the USVs will form a group

of algorithm functions and parameter sets that can

cope with the characteristics of many kinds of loads

in the marine environment and accomplish tasks.

The online evolution stage of USVs refers to con-

ducting continuous dynamic tests and evaluation for

the USV autonomous system in the process of prac-

tical tasks. If the system judges that the current al-

gorithm function and parameters can meet the task

requirements, it will accept the reduction of equip-

ment performance to a certain degree, so as to de-

crease the impact of frequent replacement of algo-

rithms or change of system parameters on the sys-

tem stability. When the equipment performance de-

creases to a certain threshold and is judged to be un-

able to meet the task requirements, the system will

adjust the algorithm parameters or select other algo-

rithm functions according to accumulated online

test data and previous training sets. Due to the limi-

tation of USV hardware performance, the influence

of external loads may exceed the adjustment range

of USVs in some extreme weather. In this situation,

the system can provide timely feedback and choose

to return, manually remote control or change the

task requirements according to shore-based deci-

sions, so as to reduce the loss in severe situations.

2 Structure of evolvable USV con-
trol system

The evolvable USV autonomous system (see

Fig.2) is an intelligent system that can select differ-

ent algorithm functions and adjust parameters to im-

prove the USV equipment performance for different

overall task requirements. The data flow of the sys-

tem is an object-oriented process, and the algo-

rithms can be defined as processing methods for

corresponding data objects. Thus, changes in algo-

rithms do not influence the transfer of data objects,

which ensures that the system operates effectively.

The evolvable USV autonomous system includes

four subsystems, the evolver, the perceptron, the

planner, and the actuator. It demonstrates different

performances depending on overall tasks and the

marine environment [7, 14]. The evolver parallelly

acts on the perceptron, the planner, and the actuator.

It uses the data generated by the subsystems for

tests and evaluation of the USV equipment perfor-

Fig. 1 Application process of USV intelligent evolution
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mance and as a reference for the individual optimi-

zation of subsystem algorithms and uses the overall

performance in tasks as the evolution direction of

the system. Changes in algorithm functions and ad-

justment of parameters do not affect the architecture

and operation mode of the system. The evolutionary

objective of the USV autonomous system is to im-

prove the USV equipment performance, namely to

improve the ability of USVs to complete specific

tasks in specific environments within a given time

scale.

The ability of USVs to complete specific tasks is

influenced by the coupling of multiple levels and

multiple technical nodes. As shown in Table 1, the

index level refers to the hardware base of USVs,

such as the propulsion power, the fuel consumption,

the configured calculation power, and the optical

image resolution. The optimization at this level is

mainly targeted at the preliminary design and con-

struction level of USVs. The behavior level means

the performance of USV hardware under a series of

temporal orders, such as the technical radius of

ships, the braking distance, and the heaving acceler-

ation. The optimization at this level is mainly aimed

at the frequency and manner in which orders are

sent. The function level refers to the performance of

different intelligent algorithms, such as the image

recognition algorithm and the path planning algo-

rithm. The optimization at this level mainly focuses

on algorithm functions and algorithm parameters.

The task level refers to the equipment performance

of USVs when they are used in practice. This level

is the coupling result of influences of multiple tech-

nical nodes in the first three levels based on the de-

sign architecture of the system. It can be seen that

most traditional optimization methods for autono-

mous systems are aimed at single nodes, such as re-

placing the power equipment, changing the control

mode, and optimizing the control algorithm. There

is no comprehensive consideration of equipment

performance in the optimization process.

Currently, many studies focus on independent op-

timization of subsystems but fail to pay enough at-

tention to the interaction among subsystems. For ex-

ample, the recognition results of the perceptron are

necessary information for the planner. The planning

results (such as planning path points) affect the pa-

rameters of the auto-steer in the controller, which in

turn affects the recognition accuracy and the recog-

nition time of the perceptron. Therefore, the intelli-

gent evolution of a well-designed USV autonomous

system should take full consideration of coupling

among different parts based on independent optimi-

zation of algorithms in each part to conduct learn-

ing iteration for algorithms [6]. Thus, continuous im-

provement of the USV equipment performance is

achieved.

The evolvable USV autonomous system can

make full use of the measurement data in the sea ar-

ea, and optimizes the subsystems and equipment

performance based on the established quantitative

algorithm of the objective function. Its advantage

lies in that based on the independent optimization

of algorithms in previous subsystems, the system

Fig.2 Control structure of evolvable USV autonomous system
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can continuously improve the algorithm characteris-

tics with the coupling relationship according to the

complex influence of the marine environment and

overall task requirements. Thus, better equipment

performance can be obtained.

3 Example of intelligent evolution
of obstacle-avoidance algorithm
of USVs

The primary problem faced by the intelligent evo-

lution of USVs, which are equipment defined by al-

gorithmic software, is that there is no quantifiable

mathematical representation of the relationship be-

tween algorithms and equipment performance. It is

difficult to decompose the evolutionary objective

function into sub-algorithms by analytical methods.

This problem belongs to the performance evalua-

tion field of intelligent unmanned equipment [13].

Therefore, in order to quickly verify the feasibility

and effectiveness of the proposed method, our re-

search team selected the local path planning algo-

rithm, RRT, whose evolutionary objective function

is clear, to carry out example research on the intelli-

gent evolution of USVs in the sea area.

3.1 Performance evaluation function of
the path planning algorithm

The computational performance of a local path

planning algorithm, such as time complexity and

space complexity, is determined by the structure of

the algorithm itself. In the case of the RRT algo-

rithm, for example, its impact on the equipment per-

formance is reflected in the variation of the step

size and the target deviation probability of the algo-

rithm, so they can be selected as parameters to be

evolved [8]. In the real sea trial, the final perfor-

mance of the path planning algorithm is influenced

by the characteristics of the USV control system

and environmental loads. The transfer of motion

state signal is shown in Fig.3.

According to the map information given by the

USV sensing algorithm, after the path planning al-

gorithm gives the desired route information T(x, y),

the USV motion state at each sampling period is re-

lated to the motion state at the last moment, the con-

trol order at the last moment, environmental loads

and delay of USV software and hardware systems.

The motion state s of USVs is directly measured by

the inertial navigation system and expressed by the

position, the velocity, and the acceleration, namely,

（1）

where x, y, and z indicate the position information;

u, v, and r represent the velocity information; α, β

and γ denote the acceleration information. Mean-

while, the motion state can also include high-order

quantities such as acceleration and angular accelera-

tion.

The control algorithm of USVs can be indicated

as the mapping of the control quantity e, which is

generated based on the expected route and the mo-

tion state s, namely,

（2）

Level

Index level

Behavior level

Function level

Task level

Example

Thrust power

Tactical radius

Image recognition
function

Patrol task

Form

Physical quantity

Physical quantity

Physical quantity
and score

Score

Test method

Objective calculation

Objective calculation

Objective calculation and
subjective description

Subjective description and
objective calculation

System attribute

Hardware level with single
hardware working

Hardware level with single
hardware working

Sub-system level with
multiple algorithms working

Overall system level

Environment
influence

No

Little

Large

Significant

Table 1 Hierarchical division and corresponding features of technical nodes for USV autonomous system

Fig. 3 Transfer model of motion state quantities of USV
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where fc is the mapping of the control algorithm

from the motion state to the control quantity. The

control quantity e varies with the USV power sys-

tem.

In this case, in consideration of the precondition

of virtual obstacles, the expected route is a fixed

value in a single obstacle-avoidance task.

Moreover, the marine load is generally difficult

to be measured. Fossen et al. [7] used the probability

distribution method to describe it, and the environ-

mental load is given by

（3）

where fenv is the predicted value of the external load

at the current motion state; PDF(ωw, A) is the proba-

bility distribution of the wave frequency ωw and the

wave height A at the current marine situation. Under

specific sea conditions, the probability distribution

can be considered unchanged in a period, namely

that this function is time-invariant.

Then, in the actual operation of the USV system,

the communication and computational delays be-

tween algorithmic functional modules are deter-

mined by the system design and algorithms, which

are generally constant. The delays of software and

hardware systems in the marine enviroment are

mainly reflected in the delay of the execution time

of the actuator. For example, the steering time is re-

lated to the rotating size of the steering engine.

Therefore, the impact of delay of the USV system

on the motion state can be expressed as a function

related to the control quantity e, namely,

（4）

where fd is the mapping from the motion state to the

delay of the system; gd is the mapping from the con-

trol quantity to the system delay. Therefore, the

change in the motion state of the USV in a single

obstacle-avoidance task in the specific marine envi-

roment can be represented as a convolution of mul-

tiple influencing factors' mapping functions, namely,

（5）

where st(k+1) and stk denote the motion states of the

USV at two consecutive measurement moments, re-

spectively.

Thus, the overall performance of the USV mo-

tion state can be obtained, which includes many

kinds of information such as the performance of the

control algorithm, the environmental load, and the

system delay. The obstacle-avoidance performance

of USVs can be evaluated from the USV trajectory

(position, velocity, and other information) and the

motion stability (angular velocity and other infor-

mation).

From the above analysis, the obstacle-avoidance

performance of the USV in a single task in the spe-

cific marine enviroment can be measured by the

USV motion state during the test. The unknown fac-

tors such as the USV's characteristics and the envi-

ronmental load have been coupled in the changes of

the motion state. In addition, as the motion state is

the most easily monitored and recorded system in-

formation in practice, the performance evaluation

based on the analysis of the motion state is extreme-

ly important.

In this case, limited by the measurement data, the

research team selected two indexes based on the

task requirements, the path length and the path

smoothness, to generate the objective function for

the algorithm evolution. The path length is used to

examine the efficiency of the planned obstacle-

avoidance path by the path planning algorithm in

the case of a given starting point and end point. A

smaller path length means that the USV can avoid

obstacles in the map more effectively. The path

smoothness affects the requirements of the planned

path on the USV maneuverability. Smaller path

smoothness means that the generated path requires

less for the hydrodynamic performance of the USV

and has higher stability in more complex environ-

ments. The two can be calculated as

（6）

where n is the number of path segments; ΔLi indi-

cates the length of No. i path; Δθi is the change in

the angle between No. i path and No. i+1 path. For

the test results in one group, the test indexes are

mapped to the range of [0, 100] by the normaliza-

tion method.

The traditional optimization method for the path

planning algorithm is to find the algorithm parame-

ters that minimize the values of the two expressions

based on the two objective functions in Equation

(6). Although this method can improve the perfor-

mance of the algorithm to a certain extent, it does

not pay enough attention to the coupling effect be-

tween the generated path and the trajectory tracking

algorithm as well as the perturbation of external

loads in the marine enviroment.

In the real sea trial, the coupling effect between

the path planning and the trajectory tracking algo-

6
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rithm is reflected as the actual trajectory of the USV

in the marine enviroment based on the given

planned path. Therefore, the performance of the

path planning algorithm can be indicated by the tra-

jectory length and the accumulated heading change

of the USV accordingly, and it is given by

（7）

where and respectively indicate the tra-

jectory length and the accumulated heading change

in the real sea trial; dl and dθ are the differential

forms of the path length and the angle change, re-

spectively.

The randomness of the RRT algorithm, namely

that there may be different solutions for each set of

hyperparameters values, and the limited real sea tri-

al resources are taken into consideration. In the pro-

cess of path planning by the algorithm, we use

Equations (6) and (7) to analyze the planning re-

sults and select the one with the best effect among

several actually generated sets of paths as the

planned path under this set of hyperparameters for

the real sea trial.

After being processed by the normalization meth-

od, the objective function of the local path planning

algorithm in the real sea trial is given by

（8）

where <ω, Enormal> is the dot product of the vector

ω and Enormal;

; ω is the weight coefficient vector.

The value of ω can be set manually, which is influ-

enced by the design requirements of the tested USV

and is a subjective quantity.

From the objective function of the path planning

algorithm, it can be known that a smaller value of

the objective function leads to a better performance

of the path planning algorithm in the real sea trial.

3.2 Evolution of algorithm parameters
based on the surrogate model

Due to the complexity of the actual environment,

the relationship between the system parameters and

the USV equipment performance can be generally

considered as a multi-modal function. It is difficult

to fit the relationship by traditional linear or nonlin-

ear regression methods. Meanwhile, a single test is

time-consuming and complex, and the acquired da-

ta samples are small in size. In view of this, by us-

ing the principle of experiment design, the research

team selected scattered data points in the high-di-

mensional parameter space, so as to reduce the re-

quirement for data in the marine enviroment [15].

Then, the machine learning method represented by

the Gaussian regression process (GRP) is used to re-

place the relationship between the objective func-

tion and the optimal parameters in the optimization

algorithm with a surrogate model [16-20]. Then, the

parameter set which can achieve the optimal equip-

ment performance is obtained by optimization algo-

rithms such as the rapid traversing method or the ge-

netic algorithm.

The evolution process of the algorithm parame-

ters is shown in Fig.4. On the one hand, the fitting

accuracy of the Gaussian surrogate model is influ-

enced by the distribution of sample sets. On the oth-

er hand, the models of its kernel function, mean

function, and likelihood function all affect its con-

vergence accuracy. For different parameter sets, an

appropriate mathematical model is selected by con-

sidering the characteristics of the physical process

during the operation. This is beneficial to improv-

ing the reliability and accuracy of the evolution of

algorithm parameters.

Moreover, for the parameter adjustment in prac-

tice, it is not difficult to determine the definition do-

main of an available parameter, but it is difficult to

confirm that the parameter set which achieves the

optimal performance must fall within the selected

definition domain. Therefore, the evolution of algo-

rithm parameters based on the surrogate model

mainly addresses the problem of finding the opti-

mal parameter set in the definition domains and

their neighborhoods which are formed based on the

data distribution of the sample set.

3.3 Design of real sea trial

The "Zhuimeng-3" USV was used to develop the

Fig. 4 Evolution process of algorithm parameters based on a surrogate model
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testing range

Construct sample
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training set

Construct real sea
trial and evaluate
task performance

Learn a surrogate
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Gaussian surrogate
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parameters (such
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algorithm
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evolution

convergence
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test, which is about 7 m long and has a planned

speed of 8-10 kn. Its photograph is shown in Fig.5.

Fig. 5 "Zhuimeng-3" USV

The "Zhuimeng-3" USV includes a power supply

system, an actuator system, a monitoring system, a

sensing system, a computing system, and a network

system. The power supply system includes genera-

tors and storage batteries; the sensing system in-

cludes maritime radars, the camera cluster, and

anemographs; and the actuator is the Mercury out-

board engine. As the control algorithm of trajectory

tracking is limited by the physical characteristics of

the outboard engine, this USV has lower control ac-

curacy and higher requirements on the results of the

path planning algorithm than traditional screw-rud-

ders or pumps. Moreover, the test sea area is often

at sea state 3-4. This sea state means a large exter-

nal load for the tested USV. Therefore, this has a

high practical value for the parameter evolution of

the path planning algorithm.

In the test, the navigational speed is about 8 kn.

As a single test does not exceed 30 min, the size of

the selected map is 2 400 m × 2 400 m. In the algo-

rithm, the number of actually used grids is 600 ×

600. Thus, the length of a single grid corresponds to

4 m length in the map. With the top left corner of

the grid as the zero point, the positions and the radii

of obstacles (the expansion safety radius is 15 m)

are shown in Table 2.

Table 2 Location of virtual obstacles and corresponding

avoidance radii

Center point of
an obstacle/m

Avoidance
radius/m

Center point of
an obstacle/m

Avoidance
radius/m

The starting and end points of the path planning

are set as (100 m, 100 m) and (480 m, 500 m), re-

spectively. The map of the virtual obstacles is

shown in Fig.6.

3.4 Results of real sea trial and analysis

In the simulation test of the preliminary algo-

rithm, the ranges of the target deviation probability

and the step size are set as [0.1, 0.3] and [150 m,

180 m], respectively.

According to the design principle of the test, nine

sets of parameters are used as the sample points in

the real sea trial. Let the weight vector ω =(0.5,0.5)T.

The parameters and the test results of the real sea

trial are shown in Table 3 and Fig.7.

Table 3 Path results in a real sea trial

Step size
D/m

Target deviation
probability P

Path
length/m

Path angle/
(°)

Value of
objective
function

According to the above data, the Gaussian model

is used to establish the surrogate model of the rela-

tionship between parameters and scores [16], and the

kernel function is set as

（9）

where σ and ξ are respectively the predicted vari-

ance and the scale factor; x and x' are the input pa-

rameter sets. This kernel function suits the physical

process in which output results vary with parame-

ters smoothly [17]. Due to the randomness of the

RRT algorithm, it can be assumed that the scores of

the real sea trial will vary smoothly with the two pa-

rameters. Meanwhile, the convergence condition of

the corresponding surrogate model is to adjust the

Fig. 6 Setting of virtual obstacles
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values of σ and ξ to minimize the loss function. In

other words, the corresponding predicted values

should satisfy

（10）

where x* is the parameter pair that waits to be pre-

dicted; yguess indicates the corresponding predicted

value; is the expected loss function; arg min de-

notes calculating the predicted value with the mini-

mum value of the loss function. The loss function

used in this test is given by

（11）

where y* is the true value. is the quadratic sum

of the difference between the predicted value yguess

and the true value y*. The predicted model which

makes this value minimum is the required parame-

ter-score mapping model.

For the Gaussian model in which the test data of

the real sea trial vary with the algorithm parame-

ters, its regression results are shown in Fig. 8(a),

where " + " denotes the measurement data and the

curved surface is composed of fitting data. The

trend of the loss function varying with the number

of iterations is shown in Fig. 8(b). For the optimal

RRT algorithm in the map and marine enviroment,

which is obtained by fitting the Gaussian model, the

parameters are the step size D = 164 m and the tar-

get deviation probability P = 0.05.

The obstacle-avoidance path generated by this pa-

rameter set is shown in Fig.9. According to the actu-

al test results, the sample parameter sets for the test

can meet the requirement in practice and are able to

complete the obstacle-avoidance task. The results

obtained by the surrogate model are the parameter

set that performs better in the corresponding defini-

tion domains of parameter sets in the sample space.

Fig. 7 Comparison between planned paths and paths in a real sea trial

Results of the real sea trial
Planned path point

Results of the real sea trial
Planned path point

Results of the real sea trial
Planned path point

Results of the real sea trial
Planned path point

Results of the real sea trial
Planned path point

Results of the real sea trial
Planned path point

Results of the real sea trial
Planned path point

Results of the real sea trial
Planned path point

Results of the real sea trial
Planned path point
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Thus, the parameter-evaluation mapping generated

based on the surrogate model already contains the

comparison results between the USV performance

of the optimal parameter set and that of an available

parameter set that is randomly selected. By expand-

ing the number of samples and adding the circula-

tion test, we can more accurately generate the opti-

mal obstacle-avoidance parameters of the "Zhui-

meng-3" USV in the test sea area.

Planned path

Fig.9 Obstacle-avoidance path generated by the RRT

algorithm based on the optimal parameter set

In addition, considering the influence of the pa-

rameters of the RRT algorithm on its calculation re-

sults, the selection trend of the optimal step size is

reflected in the search of boundaries of obstacle-

avoidance areas as much as possible in the limited

space. The path in Fig.9 is close to being tangent to

the circle areas whose radii are the avoidance radii

of obstacles after expansion. This indicates that the

space is searched as much as possible. The selection

trend of the target deviation probability is reflected

in the divergence of the path search in the space. In

the above obstacle map, there are many obstacles

between the starting point and the end point, and

the space between obstacles is small. The reason-

able reduction of the target deviation probability

helps the planning algorithm to search the space

and thus search for high-quality paths in a narrow

area. It can be seen that the Gaussian surrogate

model can effectively fit the changing trend of the

corresponding algorithm performance in the marine

enviroment on the premise of limited data sets. The

optimal parameter values generated by it are inter-

pretable and in accordance with practice.

4 Conclusion and prospects

The marine environment is a huge complex and

stochastic system, and USVs are composed of mul-

tiple complex subsystems. This leads to the fact that

the USV equipment performance is the coupling re-

sult among multiple complex systems. Aiming at

the above difficulties, this paper combined the algo-

rithm characteristics of the USV autonomous sys-

tem and proposed two main forms of the intelligent

evolution of USVs from the perspective of intelli-

gent algorithms: One is the evolution of algorithm

functions and the other is the evolution of algorithm

parameters. On this basis, with the obstacle-avoid-

ance algorithm as the example, this paper prelimi-

narily verified the feasibility and effectiveness of

the proposed method in improving the equipment

performance of USVs based on the test results in

the real marine enviroment.

Limited by the insufficient understanding of the

generation mechanism of intelligent combat effec-

tiveness of unmanned equipment and the imperfec-

tion of testing technology in the real marine enviro-

ment, this study is still in the experimental explora-

tion stage. In the future, we will develop more ex-

tensive and in-depth research aiming at the intelli-

gent evolution mechanism of unmanned marine

equipment and testing technology in the real marine

Fig.8 Fitting data of Gaussian surrogate model

(a) Comparison between fitting results by the Gaussian surrogate model
and practical

Number of iterations

(b) Variation of loss function value with the number of iterations
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enviroment. The following research suggestions are

proposed for the intelligent evolution of USVs.

The first one is the study on quantitative models

of objective functions for USVs' intelligent evolu-

tion. As the USV equipment performance is the re-

sult of a complex environment coupled with multi-

ple algorithms, it is difficult to describe objective

functions of the intelligent evolution by analytical

methods. Therefore, it is the premise for realizing

intelligent evolution to propose quantitative models

of objective functions of the intelligent evolution

based on the generation mechanism of intelligent

combat effectiveness of unmanned equipment.

The second one is the study on the construction

method of machine learning models for USV's intel-

ligent evolution. The underlying layer of machine

learning is composed of various linear or nonlinear

mathematical regression models, which are also

called hyperparameters in machine learning. Many

studies have proved that different hyperparameters

show completely different results when facing dif-

ferent learning objects. Therefore, exploring the in-

teraction mechanism between these hyperparame-

ters and the USV equipment performance and fur-

ther proposing the construction method of machine

learning models is the path to realize intelligent evo-

lution.

The third one is the study on efficient acquisition

methods for learning data of USVs' intelligent evo-

lution. The test of large and medium-sized USV in

the real marine enviroment is costly and time-con-

suming, and a single test has a complicated process.

Researchers should reasonably conduct representa-

tive tests according to the characteristics of USV

systems. A large number of high-quality learning da-

ta sets are the raw material for USVs' intelligent

evolution. Thus, it is the guarantee for the realiza-

tion of intelligent evolution to study the formulation

of standard testing subjects as well as the collection

and processing of test data based on the construc-

tion of test sites for marine unmanned equipment in

the real marine enviroment.
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多约束条件下无人艇和无人机集群
协同航迹规划
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摘 要：［目的目的］为实现海上无人集群在执行任务过程中的安全航行和通信保持，开展无人艇（USV）和无人机

（UAV）集群协同航迹规划问题的研究。［方法方法］采用禁入和禁出地理围栏进行场景建模，将规避威胁和障碍问

题转化为地理围栏约束。针对平台之间的碰撞冲突和通信连接问题，提出基于时序检测的碰撞冲突和通信保

持约束判断准则。以集群平均航行时间为航迹优化函数，将多约束条件转化为惩罚函数，采用自适应差分进化

算法进行优化求解。［结果结果］仿真结果表明，所提方法能够在威胁和障碍环境中保持无人艇和无人机集群的安

全航行和通信连接，并在满足多约束的条件下实现集群平均航行时间最短。［结论结论］该方法可用于海上无人集

群面对威胁和障碍环境时的离线航迹规划，具有一定的应用价值。

关键词：无人艇；无人机；海上无人集群；协同航迹规划

Systems Research Institute, Inc, 1998.

[11] HORMANN K, AGATHOS A. The point in polygon

problem for arbitrary polygons [J]. Computational Ge-

ometry, 2001, 20 (3): 131-144.

[12] QIN A K, SUGANTHAN P N. Self-adaptive differen-

tial evolution algorithm for numerical optimization

[C]//2005 IEEE Congress on Evolutionary Computa-

tion. Edinburgh, Scotland, UK: IEEE, 2005.

基于机器学习的实海域无人艇
避碰算法智能演进方法
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摘 要：［目的目的］无人艇（USV）效能是指在给定时间内的特定海域完成指定任务的能力，是多层次多技术节点

耦合作用的结果，而针对单一技术节点的传统优化方法，对无人艇效能的提升效果有限。［方法方法］针对无人艇

自主系统的特点，从智能算法的角度，提出无人艇智能演进的 2 种主要形式：一是算法函数；二是算法参数。在

此基础上，给出基于机器学习的无人艇智能演进方法，设计一种可演进的无人艇自主系统控制体系架构，并在

实海域测试。［结果结果］ 以无人艇避碰算法为例，基于实海域测试结果，初步验证了所提方法在提升无人艇效能

方面的可行性与有效性。［结论结论］基于机器学习的无人艇智能演进方法是持续提升无人艇效能的有效途径，具

有较高研究价值和应用意义。
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