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0 Introduction

Since the concept of Airsea Battle was put for-

ward by the US Army in 2011, with the progressive

evolution of such concepts as multi-domain opera-

tion, warfare has no longer been limited to single-

domain operation, but gradually transferred to cross-

domain cooperation and multi-domain integration [1].

Under the idea of multi-domain operation, in combi-

nation with broad prospects of unmanned combat, a

new concept of warfare with unmanned marine ve-

hicle (UMV) swarms has been proposed. At pres-

ent, the research on UMV swarms in mission plan-

ning, path planning, environmental perception, and

formation cooperation is still in its infancy, facing

many challenges [2].

UMV swarms are composed of unmanned sur-

face vehicle (USV) and unmanned aerial vehicle

(UAV) swarms. Cooperative path planning consider-

ing cross-domain characteristics of USVs and

UAVs is one of the key technologies. At present,

most of the references focus on path planning of

USVs or UAVs. Combining the advantages of a Vor-

onoi diagram and a visibility graph, Niu et al. [3]

solved shortest-path planning of USVs by the Dijks-

tra's algorithm. Under the same computational effi-
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ciency, this method yields a shorter path than the

traditional Voronoi diagram method does. However,

it fails to model a threat area with a non-zero zone.

Yang et al. [4] converted satellite thermal images in-

to binary images to provide environmental informa-

tion for path planning. Considering the turning per-

formance and environmental constraints of a USV,

they solved the shortest collision-free path of the

USV by using the finite-angle A* algorithm. With

average solving time of about 0.05 s, this method

can be used for real-time path planning. However, it

is difficult to guarantee the real-time accuracy of

satellite images. In terms of path planning for USV

formations, Ouyang et al. [5] planned paths of USV

formations based on an improved rapidly exploring

random tree algorithm. In addition, they proposed a

non-strict conformal correction vector, which can

make USVs keep formations stable to a maximum

extent while avoiding obstacles. Zhou et al. [6]

planned a reliable obstacle-avoidance path for a

USV formation, based on a deep reinforcement

learning method. With two designed reward func-

tions, USVs are trained to learn the two behaviors

of keeping a fixed formation shape and flexibly

changing formation shapes. This method can yield a

good result in an environment with cluttered obsta-

cles. UAVs were studied earlier than USVs in terms

of path planning. At present, the latest research

mainly focuses on cooperation between UAVs. For

example, paths for simultaneous arrival of UAVs

are designed to improve the effectiveness of cooper-

ative attacks. In view of multi-UAV path planning

for multi-target attacks, Babel [7] proposed a priority

algorithm of simultaneous arrival based on the

shortest path. With this method, paths satisfying

time constraints can be planned for multiple UAVs

in the case of threats and obstacles. However, coop-

erative path planning considering cross-domain

characteristics has been rarely studied. With respect

to path planning of unmanned underwater vehicles

and unmanned aerial-aquatic vehicles for coopera-

tive attacks, Wu [8] modeled constraints in different

media and relevant optimization indexes. On this

basis, a method of cooperative path planning with

the two stages of surface search and underwater at-

tack was proposed, and a particle swarm optimiza-

tion algorithm was adopted for calculation. Thus,

the cross-domain cooperative attack was realized.

From the research in the above references, the ex-

isting methods mainly focus on path planning of ho-

mogeneous platforms, with little consideration

about coupled constraints between cross-domain

heterogeneous platforms. The coupled constraints

that need to be considered in cooperative path plan-

ning of USV and UAV swarms include continuous

communication link and arrival time. As direct com-

munication distances of USVs from shore-end com-

mand centers are shorter than those of UAVs, com-

munication between USVs is usually relayed

through UAVs in order to extend combat radii.

Therefore, in cooperative navigation of USVs and

UAVs, communication-distance constraints are nec-

essarily retained all the time. In addition, arrival

time constraints of USVs and UAVs also need to be

considered to ensure overall cooperativity of cross-

domain swarms at their arrival in combat zones.

In view of cooperative path planning of USV and

UAV swarms, on the basis of the constraints of

threat avoidance, maneuverability, and collision

avoidance, this paper further considered communi-

cation-link constraints based on requirements of

cross-domain communication between USVs and

UAVs. This aims to make sure USV and UAV

swarms can communicate with each other all the

time during their navigation. Then, the paper de-

signed a path optimization function, converting mul-

tiple constraints into penalty functions, and used a

self-adaptive differential evolution algorithm to

solve the optimization problem.

1 Modeling for cooperative path
planning

1.1 Problem description

In the initial stage of mission execution, a USV

swarm sets sail from a designated water area at the

shore end, while a UAV swarm takes off from a des-

ignated landing field. After navigation of a certain

distance, they safely arrive in their respective mis-

sion areas to execute subsequent missions like pa-

trol, search, reconnaissance, positioning, tracking,

and attack. The so-called cooperative path planning

of USV/UAV swarms refers to the generation of

swarm navigation paths of optimal path perfor-

mance with initial positions of the USV/UAV plat-

forms as start points and entry points of the desig-

nated mission areas as finish points. Such paths are

generated under comprehensive consideration of

threat avoidance, maneuverability, collision avoid-

ance, communication link, and arrival time. Thus,

the swarm platforms can reach their mission areas

safely and quickly. Fig. 1 shows a schematic dia-
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gram of cooperative path planning of USV and

UAV swarms.

UAV swarm

USV swarm

Fig. 1 Diagram of cooperative path planning for USV and

UAV swarms

In cooperative path planning, both start and fin-

ish points of a path are known. Thus, a path can be

generated by inserting a limited number of way

points between the start and finish points. Suppose

that the number of USVs and UAVs is NS and NA,

respectively. Then, the total number of platforms is

N = NS + NA. All the platforms are numbered 1,

2, … , N in the order from USVs to UAVs. For the

platform Ui (i = 1, 2, … , N) numbered i in the USV/

UAV swarms, it has a given start point p( i )
0 and a fin-

ish point p( i )
f . Thus, the optimal-path set P* of all

the platforms in the cross-domain swarm, obtained

through optimization under comprehensive consid-

eration of threat information and multiple con-

straints, is as follows.

（1）

where p( i )
j refers to waypoint coordinates, represent-

ing the jth waypoint of the platform Ui; ni is number

of waypoints except start and finish points. Differ-

ent paths may have different numbers of waypoints,

which can be set as required. To solve cooperative

path planning of USV/UAV swarms, we need to

properly model scenes and constraints, construct a

path optimization function that meets practical re-

quirements, and solve the optimal-path set P*

through optimization algorithm.

1.2 Scene modeling

USV and UAV swarms move in a sea area and

airspace, respectively. They need not only to restrict

platform motion within designated boundaries of

the sea area and airspace, but also to consider avoid-

ing threats and obstacles wherein. It is necessary to

establish a unified model to describe environmental

space, which is a basis for subsequent cooperative

path planning.

Polygonal and circular electronic geo-fences [9]

are used in airspace modeling to describe boundary

and threat information of airspace. Airspace bound-

aries are keep-in geo-fences in the air, limiting navi-

gation of UAVs within specified airspace to ensure

safety of the UAVs in mission execution. Due to en-

emy threats and bad weather, there are also no-fly

zones for UAVs, namely, keep-out geo-fences in the

air. For fuel consumption reduction, UAVs should

avoid a high degree of maneuver in the way to their

mission areas, and level flight is usually adopted. In

this paper, it is assumed that UAVs are flying at the

same height. Then, airspace is simplified to polygo-

nal and circular areas at a specified height. First, a

polygonal geo-fence is defined, with the following

attributes and parameters:

（2）

where κ is the attribute of the geo-fence, κ=1 means

a keep-in geo-fence and κ=0 means a keep-out geo-

fence; h is the height of the geo-fence; m ≥ 3 is the

number of polygonal vertices; pi (i = 1, 2, ..., m) re-

fers to vertex coordinates of the geo-fence. Vertexes

are usually arranged clockwise or counterclock-

wise, and the specific arrangement is determined as

needed. Similarly, a circular geo-fence can be de-

fined, with the main parameters being its center co-

ordinates and radius, and the number of vertices be-

ing m = 1. Airspace EA is an area composed of one

keep-in geo-fence and multiple keep-out geo-fences

in the air:

（3）

where BA0 is the keep-in geo-fence in the air; BA1,

BA2, ... are keep-out geo-fences in the air. In practi-

cal application, geo-fences are for unified represen-

tation of mission-area boundaries, threat zones, and

obstacles. During the setting of geo-fences, it is nec-

essary to enlarge or narrow the areas to leave some

space redundancy for navigational safety.

A sea area is usually modeled based on an elec-

tronic chart [10]. The common electronic chart in the

ShapeFile format contains more than 30 layers. Lay-

ers with little useful information for mission execu-

tion can be ignored. Only those useful for mission

execution, navigation, and control are necessarily

analyzed and dealt with, including the layers of

ocean/land, obstacles, waterways, regional boundar-

ies, and landforms. In a two-dimensional chart,

polygons are used to fit shapes of coastlines, is-

lands, peninsulas, and beaches. This is equivalent to

using multiple connected line segments to fit plane

graphics with irregular edges. This modeling meth-

od is the same as that of airspace. A coastline is a

14
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keep-in geo-fence on the sea, while threats and ob-

stacles such as islands, peninsulas, and buoys are

keep-out geo-fences. Therefore, a sea area ES is an

area composed of one keep-in geo-fence and multi-

ple keep-out geo-fences on the sea:

（4）

where BS0 is the keep-in geo-fence on the sea; BS1,

BS2, … are keep-out geo-fences on the sea.

An electronic chart has accurate outline informa-

tion of sets, with an island generally consisting of

hundreds of edges and a coastline consisting of up

to thousands or even tens of thousands of edges.

The huge graphic information consumes a lot of

computing resources, greatly reducing algorithm ef-

ficiency. Moreover, accurate information on coast-

line and island contours is of little significance for

path planning. Therefore, the electronic chart needs

to be preprocessed in practical application. Specifi-

cally, coastline and island boundaries are simplified

in terms of coarse grains to generate scene models

with few edges and simple geometric relationship

as much as possible.

2 Optimal solution to cooperative
path planning

In this section, a path optimization function is es-

tablished with average travel time (ATT) as the in-

dex. In addition, cooperative path planning is con-

verted into a constrained optimization problem un-

der the consideration of multiple constraints like

geo-fences, turning maneuverability, collision

avoidance, and communication link. Due to its ad-

vantages in solving high-dimensional nonlinear op-

timization problems, a self-adaptive differential evo-

lution (SaDE) algorithm is used to solve this optimi-

zation problem.

2.1 Path optimization function

Path planning mainly aims to enable cross-do-

main swarms to reach designated areas safely and

quickly. The indexes to evaluate path performance

usually include navigation distance, navigation

time, and path smoothness. In terms of navigation

distances, due to the different navigation speeds of

various platforms, optimization of navigation dis-

tances is not suitable for heterogeneous platforms

with different performances. In contrast, optimiza-

tion of navigation time is more in line with the pur-

pose of path planning, with a more specific goal. In

terms of path smoothness, from the perspective of

safe navigation, path smoothness only needs to

meet the turning constraints of platforms. High path

smoothness means a smaller turning angle of a plat-

form and a shorter navigation time. This is consis-

tent with the optimization goal of navigation time.

Therefore, the use of navigation time as the optimi-

zation index can meet the requirement of fast arriv-

al at designated areas in path planning. Moreover,

navigational safety is realized through the design of

constraints. Based on timeliness requirements of

missions, considering the overall cooperativity of

cross-domain unmanned swarms, this paper used

the average navigation time of swarms as the opti-

mization objective. The length of the navigation

path of the platform Ui is the sum of distances be-

tween adjacent waypoints, which is expressed by

D(Pi):

（5）

where is the Euclidean norm of the vector. The

navigation time of the platform Ui is expressed by

T(Pi):

（6）

where vi is the speed of the platform Ui. Each plat-

form is usually required to arrive as quickly as pos-

sible to ensure overall cooperativity of cross-do-

main unmanned swarms and improve continuity of

subsequent mission execution. Therefore, the aver-

age navigation time is taken as the optimization ob-

jective:

（7）

where P = (P1, P2, … , PN) is the set of all paths. A

smaller J(P) means a shorter average navigation

time of swarms.

2.2 Constraints

In cross-domain cooperative path planning, fac-

tors that need to be comprehensively considered in-

clude threat/obstacle distribution in mission areas,

maneuverability of unmanned platforms, collision

avoidance among platforms in swarms, and continu-

ous communication link. The above constraints are

important factors affecting navigational safety and

must be regarded as essential conditions for path

planning. In this section, the above constraints are

modeled as geo-fence, turning, collision-avoidance,

and communication-link constraints.

2.2.1 Geo-fence constraints

In mission execution, all platforms should always
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navigate safely within their keep-in geo-fences, and

meanwhile, avoid entering keep-out geo-fences. For

a circular geo-fence, the position relationship be-

tween a platform and the geo-fence can be obtained

by only judging the distance between points and the

circle center. For a polygonal geo-fence, its relation-

ship with the path Pi of the platform Ui can be

judged by the existing classical geometric method[11].

The judgment method is not repeated here but only

briefly described.

For a keep-out geo-fence B, the given start point

p( i )
0 and finish point p( i )

f are definitely not in B.

Therefore, if every segment p( i )
k p( i )

k + 1(k = 0, 1, 2, ...,

ni) of the path Pi does not intersect with the geo-

fence B, Pi will not intersect with B, denoted as

(Pi out {B1, B2, ...}). In order to judge whether a

segment p( i )
k p( i )

k + 1 intersects with B or not, we only

need to judge intersection relationships between all

edges of B and p( i )
k p( i )

k + 1 one by one.

For a convex polygonal keep-in geo-fence B0, the

start point p( i )
0 and finish point p( i )

f are definitely in

B0. Therefore, if every waypoint p( i )
k (k = 0, 1, 2, ...,

ni) of the path Pi is located in B0, the path Pi will be

in B0, denoted as (Pi in B0). By calculating the num-

ber of intersections through the ray method, we can

judge whether p( i )
k is in B0 or not. Detailed judgment

will not be described here. For a concave polygonal

keep-in geo-fence B0, the above method is no lon-

ger applicable. In such a case, an additional judg-

ment condition is required: Every segment p( i )
k p( i )

k + 1

of the path Pi does not intersect with the keep-in

geo-fence B0.

A path Pi of a USV is taken as an example. For a

sea area ES = {BS0, BS1, BS2, ...}, the geo-fence con-

straint S1(Pi ) can be expressed as

(8)

If and only if the path Pi is within the keep-in

geo-fence BS0 and without intersections with the

keep-out geo-fences {BS1, BS2, ...}, the geo-fence

constraint is satisfied, with S1(Pi) =1; otherwise, the

geo-fence constraint is not satisfied, with S1(Pi)= 0.

2.2.2 Turning constraints

In path planning, turning constraints of a plat-

form need to be considered in order to generate a

feasible path that satisfies the maneuverability of

the platform. If three adjacent waypoints are close

to each other, with a small angle between relevant

segments, the actual turning radius may be less than

the minimum turning radius of the platform. Thus,

the turning-radius constraint limits the relative posi-

tions of three adjacent waypoints. Here, the criteri-

on for judging the turning-radius constraint is giv-

en. Three adjacent waypoints p( i )
k - 1, p( i )

k , and p( i )
k + 1 are

connected to form broken-line segments, and the

maximum inscribed circle of the segments is shown

in Fig. 2.

Fig. 2 Diagram of maximum inscribed circle during turning

The angle α between the two segments is given

by

（9）

The length ℓ of the shorter one of the two seg-

ments is given by

（10）

The radius ρ of the maximum inscribed circle is

given by

（11）

The radius of the maximum inscribed circle is the

limit turning radius. If the minimum turning radius

of a platform is greater than this limit, the platform

fails to turn successfully. Suppose that the mini-

mum turning radius of a platform is Rt. Then, the

turning constraint can be expressed as follows:

（12）

In the case of , the turning-ra-

dius constraint is satisfied. In the case of

, the turning-radius constraint is

not satisfied. In order to determine the turning-radi-

us constraint of a complete path Pi, we need to de-

compose the path into several segments, and then

apply the above method to each segment. Finally,

with the union of turning-radius constraints of all

segments, the turning radius constraint S2(Pi) of the

whole path is obtained as follows.
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（13）

where Π(· ) refers to multiplicative calculation. In

other words, as long as the turning-radius constraint

of any one segment is not satisfied, we will have

S2(Pi) = 0, namely that the turning-radius constraint

of the whole path is not satisfied. Only when the

turning-radius constraints of all the segments are

satisfied, we will have S2(Pi) =1, namely that the

turning-radius constraint of the whole path is satis-

fied.

2.2.3 Collision-avoidance constraints

Cross-domain cooperative relationships in terms

of space and time should be simultaneously consid-

ered in the cooperative path planning of USV/UAV

swarms. They are reflected as cooperative relation-

ships of swarms in spatial and temporal domains, re-

spectively. Time is coordinated by coordinating de-

parture time of platforms. On this basis, spatial con-

straints are considered to judge collision-avoidance

and communication-link constraints. For coopera-

tive path planning, collision among multiple plat-

forms is a likely problem. The research on collision

avoidance focuses on homogeneous platforms. In

other words, collision avoidance among USVs and

that among UAVs are studied. For collision avoid-

ance, it is necessary to ensure that distances among

homogeneous platforms are always greater than the

safety radius. However, it is impossible to judge col-

lisions only from the spatial relationship of paths,

and it is necessary to detect collisions in terms of

spatio-temporal coupling. First, time sequences are

determined, and simultaneous arrival of swarms is

realized through alignment of arrival time and ad-

justment of departure time. The departure time ti of

the platform Ui is given by

（14）

Then, the spatial collision constraint is judged on

the basis of time unification. A time sequence kΔT

(k ≥ 1) of collision detection is obtained by time

discretization with an interval of ΔT . Fig. 3 shows

a diagram of the time sequence.

At a collision-detection time point kΔT , given

the motion velocity vi of the platform Ui, we can

easily calculate the position of Ui at kΔT, which is

denoted as Pi[k] (where k is the sequence number of

the collision-detection point). For the homogeneous

platforms Ui and Uj, relative distances between col-

lision-detection points with the same sequence num-

ber should meet the following constraint:

（15）

where R( i )
S and R( j )

S are anti-collision safety radii of

the platforms Ui and Uj, respectively; pi[k] and pj[k]

are coordinates of the kth collision-detection points

of the platforms Ui and Uj, respectively. For the

paths of all homogeneous platforms, collision-detec-

tion points should be checked one by one according

to the above-mentioned method. If all time-se-

quence detection points pi[k] satisfy the collision-

avoidance constraint, the planned path Pi will not

collide with paths of other platforms. In this case,

the collision-avoidance constraint is denoted as

S3(Pi) = 1. On the contrary, in the case of S3(Pi) = 0,

there is a collision among paths.

2.2.4 Communication-link constraints

The cooperative mission execution of USV/UAV

swarms is based on a reliable communication net-

work. Maintenance of good communication is a pre-

requisite for completing missions, especially the

maintenance of shore-air-sea cross-domain joint

communication under complex conditions. Differ-

ent from homogeneous swarms, both UAV and

USV swarms should maintain not only intra-swarm

communication but also communication among

cross-domain platforms. In other words, UAVs and

USVs need to maintain certain spatial relationships

to ensure communication links.

Due to the different communication capabilities

of platforms, communication distances between

each platform and other platforms are different. In

view of continuous communication links, each plat-

form is required to remain within the communica-

tion range all the time. Thus, stable communication

of the whole cross-domain unmanned system can

be guaranteed. Let the communication radius be-

tween Ui and Uj be R( ij )
C . The detection method of

the communication-link constraint is the same as

that of the collision-avoidance constraint, namely

that the distance between detection points with the

Fig. 3 Time sequence diagram of collision detection

Platform
Collision detection point Arrival time of swarms

Navigation time
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same sequence number should be less than the com-

munication radius:

（16）

Generally, in the mission execution of an un-

manned swarm on the sea, it is necessary to main-

tain good communication among some key nodes.

Not all nodes are necessarily required to satisfy the

communication-link constraint. If the communica-

tion link between Ui and Uj is unnecessary, just set

the communication radius to . When distanc-

es among all detection points satisfy the communi-

cation-link constraint, stable communication of the

whole heterogeneous unmanned swarm can be guar-

anteed. In such a case, let the communication-link

constraint be S4(Pi) =1, and otherwise, let it be

S4(Pi) = 0.

2.3 Optimization based on a SaDE algo-

rithm

In view of the above multi-constraints, the coop-

erative path planning of a cross-domain unmanned

swarm can be transformed into the following opti-

mization problem:

（17）

where P* is a set of optimal paths minimizing J(P).

The so-called constraint condition means that the

paths of all platforms must meet the constraints of

geo-fences, turning, collision avoidance, and com-

munication link at the same time. In order for easy

calculation, the following optimization problem is

obtained by transforming the constraints into penal-

ty functions.

（18）

where M is a penalty factor, and it is a large positive

number.

When all the constraints are satisfied, the penalty

term is valued at 0. When all the constraints are not

satisfied, the penalty term has a maximum of 4MN,

with the severest punishment. When the constraints

are partially satisfied, the penalty item is valued at

an integral multiple of M. Its value is related to the

number of constraints that are not satisfied. The ad-

vantage of the above design lies in gradients in the

path cost function. As a result, individuals satisfy-

ing more constraints can be more likely reserved

during optimization, thus gradually producing a fea-

sible solution meeting the constraints. The penalty

factor M should be greater than the estimated J(P)

as far as possible to ensure the effectiveness of the

penalty term in the optimization.

Due to a large number of platforms and way-

points, this belongs to a high-dimensional nonlinear

optimization problem. In view of its advantages in

solving high-dimensional nonlinear optimization

problems[12], a SaDE algorithm is adopted in this pa-

per. As a random heuristic search algorithm based

on swarm intelligence theory, a differential evolu-

tion algorithm realizes optimization through cooper-

ation and competition among individuals in a

swarm. Moreover, with its unique memory, the algo-

rithm is able to dynamically track the current

search, which is convenient for search strategy ad-

justment. Thus, this algorithm is of high robustness

and global optimization capabilities. The steps for

solving the above path planning with the SaDE al-

gorithm are as follows.

Step 1: Code the paths. Real number coding is ad-

opted in the SaDE algorithm. One individual corre-

sponds to one solution. Each individual is com-

posed of several real-number bits, and each bit rep-

resents a variable. First, the number of both plat-

forms and waypoints should be given to determine

coding length. Suppose that the path of the platform

Ui contains ni waypoints. Given a constant height,

the intermediate waypoints are two-dimensional

variables. Then, the number of path variables of the

platform Ui is 2ni. Thus, the total coding length D is

the sum of the number of UAV and USV path vari-

ables:

（19）

In the formula, the first term refers to the total

number of path variables of NA UAVs, while the

second one refers to that of path variables of NS

USVs. Fig. 4 shows the coding method.

Fig. 4 Real number coding of SaDE algorithm

p( i )
ni

is coded a D-dimensional vector in terms of
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its path, and the dimension of search space increas-

es with the increase in the number of platforms and

waypoints. In the case of high environmental com-

plexity, more waypoints are required to avoid obsta-

cles, which will increase calculation time. In the

case of low environmental complexity, fewer way-

points are required to shorten the calculation time

of planning.

Step 2: Generate an initial population, and initial-

ize the number of evolutionary generations to 1. Ac-

cording to geo-fence information, determine the

planning space of waypoints and then upper and

lower bounds of each variable. Set the population

size to NP, and randomly generate NP initial indi-

viduals that satisfy the upper and lower bound con-

straints.

Step 3: Calculate the fitness function. According

to the coding method in Step 1, obtain the set P of

paths of various platforms by decoding. Then, sub-

stitute it into the path cost function to calculate the

fitness function value of each individual.

Step 4: Evolve the individuals. Adjust the muta-

tion operator adaptively according to the number of

evolutionary generations. Mutate and cross over the

population, and process boundary conditions to ob-

tain a temporary population. Conduct a "one-to-

one" selection for corresponding individuals in the

temporary and the original populations. Evolve the

selected optimal individuals into a new population.

Step 5: Terminate the optimization. Judge wheth-

er the termination condition is satisfied or the maxi-

mum number of evolutionary generations is

reached. If so, terminate the evolution. Otherwise,

increase the current number of generations by 1,

and return to Step 3.

In the optimization of cooperative path planning,

the randomly generated initial path usually fails to

meet the constraints, with a high fitness function

value under the effects of the penalty term. In the

initial stage of optimization, with the main purpose

of finding "feasible paths" that meet the constraints,

a great mutation operator is required to improve the

diversity of the population and find as many "feasi-

ble paths" as possible to prevent "prematurity". In

the later stage of optimization, with the main pur-

pose of finding an optimal path in the "feasible

path" set, a small mutation operator is required to

improve the accuracy of the global optimal solu-

tion. Therefore, the SaDE algorithm with a self-

adaptive mutation operator is adopted, and the self-

adaptive mutation operator F is designed as fol-

lows:

(20)

where F0 is a constant mutation operator; Gm is the

maximum number of evolutionary generations; G is

the current number of evolutionary generations; λ is

a parameter adaptively varying with G. In the SaDE

algorithm, the mutation operator determines muta-

tion amplitude of individuals and fineness of ran-

dom mutation. In the early stage of evolution, the

self-adaptive mutation operator is 2F0, which main-

tains the diversity of individuals. With the continua-

tion of evolution, the mutation operator is gradually

reduced to F0 to retain good paths and improve the

probability of finding a globally optimal path.

3 Simulation analysis

This paper verified the effectiveness of the pro-

posed cooperative path planning method by simula-

tion with a lake testing ground as the mission area,

based on the scene model in Section 1.2. The height

of the airspace was set to 500 m. The keep-in geo-

fence in the air was a rectangular space above the

sea area. In addition, two keep-out geo-fences in the

air and three on the sea were set randomly. It was

supposed that UAVs took off to the specified height

in the specified area. Then, the coordinate points of

UAVs after their take-offs were set as start points of

the UAVs, and the arrangement positions of USVs

on the shore were set as start points of the USVs.

In the simulation, seven platforms were set in the

cross-domain swarm, denoted as U1, U2, … , U7.

Specifically, there were three UAVs denoted as U1-
U3, and four USVs denoted as U4-U7. Table 1 and

Table 2 show the initial states of UAVs and USVs,

respectively. The safety radius among homoge-

neous platforms was 100 m. The maximum commu-

nication distance among UAVs was 12 km, and that

among USVs was 5 km. The maximum communica-

tion distance between a UAV and a USV was 10 km.

According to the number of platforms and way-

points, the variable length in real number coding of

the SaDE algorithm is 20. In the SaDE algorithm,

we set the number of individuals in the population

to 200, the maximum number of evolutionary gener-

Table 1 Initial status information of UAV

Coordinates/m
Platform

Start point Finish point

Speed
Minimum

turning
radius/m

Number
of

waypoints

HOU Y Q, et al. Cooperative path planning of USV and UAV swarms under multiple constraints 19

downloaded from www.ship-research.com



CHINESE JOURNAL OF SHIP RESEARCH，VOL.16，NO.1，FEB. 2021

ations to 500, the constant mutation factor to F0 =

0.3, and the crossover factor to 0.1. In addition, the

penalty factor was set to M = 103, and the time inter-

val for discretization was set to ΔT =5 s. Figs. 5-9

show the simulation results.

Fig. 5 shows the simulated keep-in and keep-out

geo-fences both in the air and on the sea, as well as

the planned paths of the USV/UAV swarms. UAVs

fly in the airspace at a height of 500 m, while USVs

sail on the sea. The start points of all paths are locat-

ed near the shore on the left side, and the finish

points are distributed in the mission area on the far

right side. In Fig. 5, black dotted lines refer to keep-

in geo-fences in the air and on the sea, and all paths

are kept within the geo-fences. Red and blue solid

lines refer to keep-out geo-fences in the air and on

the sea, respectively. In order for minimum naviga-

tion time, some of the paths are close or even al-

most "tangent" to the keep-out geo-fences. This will

not affect navigational safety, due to redundant dis-

tances reserved in the design of geo-fences. The

simulation verifies the effectiveness of the designed

geo-fence constraints.

Start point Finish point

Fig. 5 Results of path planning of USV and UAV swarms

Fig. 6 shows the variation of path optimization

function values with the number of iterations. In the

initial stage of optimization, under the effects of the

penalty function, the function values are high, and

all the solutions in such a case fail to meet the con-

straints. From the first to the 100th generation, the

main purpose is to find feasible solutions meeting

the constraints. In such cases, the function values

are gradually reduced to less than 1 000, and the so-

lutions can meet the constraints. This verifies the

reasonableness of the designed penalty function. Af-

ter the 100th generation, the main purpose is to find

the solution minimizing optimization function val-

ues. Finally, in the 500th generation, the fitness func-

tion value converges to 565.8, namely that the aver-

age navigation time of the USV/UAV swarms is

568.5 s.

Number of iteration

F
it

ne
ss

fu
nc

ti
on

va
lu

e

Fig. 6 Optimization process of the path optimization function

Fig. 7 shows the navigation time sequence of

USV/UAV swarm platforms. In the figure, the hori-

zontal axis refers to sailing time, while the vertical

one refers to platform number. Circles refer to the

departure time of platforms, while squares refer to

the arrival time of platforms. With the departure

time of the platform U1 having the longest sailing

time as the reference, the departure time of the plat-

forms U2-U7 is 101, 150.7, 175.5, 154.2, 7.3, and

244.7 s, respectively.

P
la

tf
or

m
ID

Fig. 7 Navigation sequence diagram of USV/UAV swarms

In order to verify the effectiveness of collision-

avoidance and communication-link constraints,

Table 2 Initial status information of USV

Coordinates/m
Platform

Start point Finish point

Speed
Minimum

turning
radius/m

Number
of

waypoints
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Figs. 8-9 show real-time distance variations among

platforms of the USV/UAV swarms. As all safety ra-

dii set in this section are 100 m, safe distances are

200 m. From the figure, the distances among the

platforms are always greater than the safety value,

which verifies the effectiveness of the collision-

avoidance constraint.

D
is

ta
nc

e/
m

Minimum distance among
UAVs
Minimum distance among
USVs
Safe distance

Fig. 8 Variation curves of the minimum distance between

platforms with time

D
is

ta
nc

e/
m

Maximum distance among UAVs
Maximum distance among USVs
Maximum distance between UAVs

and USVs

Maximum communication distance among UAVs
Maximum communication distance among USVs
Maximum communication diatance between UAVs and USVs

Fig. 9 Variation curves of maximum distance between

platforms with time

Fig. 9 shows the maximum distances and rele-

vant upper limits among UAVs, among USVs, and

between UAVs and USVs. Specifically, solid lines

refer to real-time maximum distances among the

platforms, while dotted ones refer to maximum

communication distances. From the figure, the real-

time distances of all platforms are smaller than their

maximum communication distances. This ensures

the communication link between the USV/UAV

swarms, verifying the effectiveness of the communi-

cation-link constraint mentioned above.

4 Conclusions

In this paper, a cooperative path planning method

of USV and UAV swarms based on a self-adaptive

differential evolution algorithm was proposed. This

method realizes cooperative path planning under

multiple constraints and ensures safe navigation and

continuous communication link in an obstacle-filled

environment. Thus, it is of certain application val-

ue. Obstacle avoidance, platform collision avoid-

ance, and communication link were modeled as

multiple constraints through geo-fence and time-se-

quence methods. In addition, path planning was

transformed into an unconstrained optimization

problem through the penalty function method. An

SaDE algorithm was used for optimization. It can

maintain diversity in the initial stage of search and

accuracy in the later stage, thus ensuring the solv-

ing of an optimal path. However, with the increase

in the number of waypoints, the calculation time

will continue to increase. Limited by the timeliness

of solving, the proposed method is only applicable

to offline path planning. Real-time online planning

will be deeply studied in future work.
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多约束条件下无人艇和无人机集群
协同航迹规划
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摘 要：［目的目的］为实现海上无人集群在执行任务过程中的安全航行和通信保持，开展无人艇（USV）和无人机

（UAV）集群协同航迹规划问题的研究。［方法方法］采用禁入和禁出地理围栏进行场景建模，将规避威胁和障碍问

题转化为地理围栏约束。针对平台之间的碰撞冲突和通信连接问题，提出基于时序检测的碰撞冲突和通信保

持约束判断准则。以集群平均航行时间为航迹优化函数，将多约束条件转化为惩罚函数，采用自适应差分进化

算法进行优化求解。［结果结果］仿真结果表明，所提方法能够在威胁和障碍环境中保持无人艇和无人机集群的安

全航行和通信连接，并在满足多约束的条件下实现集群平均航行时间最短。［结论结论］该方法可用于海上无人集

群面对威胁和障碍环境时的离线航迹规划，具有一定的应用价值。

关键词：无人艇；无人机；海上无人集群；协同航迹规划
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基于机器学习的实海域无人艇
避碰算法智能演进方法
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摘 要：［目的目的］无人艇（USV）效能是指在给定时间内的特定海域完成指定任务的能力，是多层次多技术节点

耦合作用的结果，而针对单一技术节点的传统优化方法，对无人艇效能的提升效果有限。［方法方法］针对无人艇

自主系统的特点，从智能算法的角度，提出无人艇智能演进的 2 种主要形式：一是算法函数；二是算法参数。在

此基础上，给出基于机器学习的无人艇智能演进方法，设计一种可演进的无人艇自主系统控制体系架构，并在

实海域测试。［结果结果］ 以无人艇避碰算法为例，基于实海域测试结果，初步验证了所提方法在提升无人艇效能

方面的可行性与有效性。［结论结论］基于机器学习的无人艇智能演进方法是持续提升无人艇效能的有效途径，具

有较高研究价值和应用意义。
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