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0 Introduction

The engine room is the heart of a ship, and the

working condition of the equipment in the engine

room is crucial for safe and efficient ship operation.

In ship design and manufacturing, ship automation

is largely reflected in engine room automation.

With the development of computer and communica-

tion technologies, marine engine room equipment

and system have been gradually automated and in-

telligentized [1-3]. Conventional fault monitoring

methods for engine room equipment are based on

physical or mathematical models, empirical models

(expert system and fault tree analysis), and reliabili-

ty models (Bayesian methods and reliability assess-

ment). Fault diagnosis relies mainly on the experi-

ence of operators and requires expert knowledge to

model complex equipment objects. The enormous

and rapid changes in the information of modern

ships under different working conditions make it

impossible to build accurate physical or mathemati-

cal models of marine engine room equipment. Tra-

ditional fault monitoring methods are unable to

make an accurate diagnosis of the condition of

equipment in the marine engine room. Therefore,

these methods are unsuitable for intelligent engine

rooms, in which equipment sensors and sensing

technologies are used to monitor the condition of
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engine room equipment. The intelligent fault moni-

toring methods based on machine learning use con-

dition monitoring data and various artificial intelli-

gence algorithms to extract valid information and

detect potential failures of mechanical equipment in

a timely manner, without requiring prior knowledge

about the object system. Compared with traditional

fault monitoring methods, intelligent fault monitor-

ing approaches based on machine learning effective-

ly, accurately, and quickly process a large amount

of condition monitoring information collected in the

marine engine room, and provide more reliable con-

dition diagnosis, which greatly reduces the involve-

ment of anthropogenic factors in fault monitoring.

With the development of machine learning algo-

rithms, fault monitoring methods based on machine

learning have become a research hotspot. Machine

learning algorithms have been widely used in fault

diagnosis of equipment in the marine engine rooms.

Gong et al. [4-5] used data enhancement and Dropout

technology to improve the convolutional neural net-

work and the accuracy of fault diagnosis of ship

bearing systems. Support vector machine (SVM)

was used instead of softmax classifier to achieve

99.86% fault diagnosis accuracy with an improved

convolutional neural network-support vector ma-

chine (CNN-SVM) algorithm. Shang et al. [6] fused

principal component analysis (PCA), K-means clus-

tering, and BP neural network to greatly reduce the

complexity of original data and improve the perfor-

mance of the BP neural network. This multi-infor-

mation fusion technique has been used for fault di-

agnosis of marine diesel engines to greatly increase

the fault detection rate. Gong et al. [7] designed a

novel convolutional neural network-global average

pooling (CNN-GAP) for fault diagnosis of the ma-

rine DC-DC converters. Zhong et al. [8] proposed a

depth belief network based on a restricted

Boltzmann machine for intelligent diagnosis of ma-

rine diesel engines and achieved a 98.61% fault de-

tection rate with the test dataset. Liu et al. [9] com-

bined rough set theory and optimized directed acy-

clic graph (DAG)-SVM for fault diagnosis of main

marine engines, which improved classification accu-

racy and reduced detection time. Meanwhile, ma-

chine learning algorithms such as SVM, neural net-

work (NN), and random forest are also used in a

wide range of industrial sectors. Konar et al. [10]

achieved higher accuracy and speed of motor bear-

ing fault detection by combining continuous wave-

let transform with SVM. Fault monitoring methods

based on machine learning algorithms reduce the re-

liance on prior knowledge of the target equipment.

The condition monitoring data are used to estimate

the real-time status of the object system, which real-

izes the adaptive extraction and intelligent diagno-

sis of fault characteristics with industrial big data.

The above fault diagnosis methods require a

large number of data in normal and fault conditions

to train diagnostic models. However, fault condition

causes great damage to the performance of engine

room equipment, and it is impossible for the pro-

longed operation of equipment in fault condition for

data collection. Therefore, there is a lack of fault da-

ta to train the fault diagnosis models. As a result,

outlier detection is needed for the fault diagnosis of

marine engine room equipment. According to the

principle of outlier detection, only the sample data

in normal conditions is needed to train the model.

Fault monitoring can be performed by defining the

fault condition data as outliers that deviate from the

normal condition samples. Outlier detection tech-

niques mainly include one-class SVM, local outlier

factor (LOF), nearest neighbor, and robust covari-

ance (RC). Bicego et al. [11] designed a novel

weighted one-class SVM by a clustering algorithm

to improve the robustness of detection. Diez-Olivan

et al. [12] used local outlier factor combined with K-

means algorithm and fuzzy modeling to greatly im-

prove the performance of marine diesel engine fault

monitoring. Zhang et al. [13] proposed an angle-

based subspace approach to select useful features

and to improve the accuracy of high-dimensional

anomaly detection. In this paper, isolation forest (if-

orest) algorithm was proposed for fault monitoring

of marine engine room equipment. As a typical

anomaly monitoring technique, iforest uses an en-

semble learning strategy to integrate multiple anom-

aly monitoring decision trees and fuse the monitor-

ing results of multiple sub-learners, in order to mon-

itor outliers and to effectively improve the stability

and accuracy of fault monitoring [14].

Engine room equipment generates high-dimen-

sional monitoring data that include a variety of ther-

mal parameters. Such data in high-dimensional fea-

ture space can easily result in the curse of dimen-

sionality in anomaly monitoring algorithms and in-

valid fault monitoring models, thus failing to

achieve optimal monitoring results. Feature selec-

tion is a very effective technique for information ex-

traction prior to fault monitoring, and manifold

learning is one of the commonly used methods for
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feature selection [15]. Manifold learning transforms

the dimension of the original data by establishing a

dimensionality reduction mapping relationship in

the high-dimensional space and embedding the low-

dimensional manifold into the high-dimensional

space of the original data [15]. In this paper, we ex-

plored the manifold learning methods such as multi-

dimensional scaling (MDS), locally linear embed-

ding (LLE), and t-distributed stochastic neighbor

embedding (TSNE). Valid information was extract-

ed from the original data with fused features, and

high-dimensional data were reduced to two-dimen-

sional data. The fused two-dimensional features

were input into the iforest model for efficient data

processing. In this paper, a simulation model of a

two-stroke marine diesel engine was built in Matlab/

Simulink to generate the data of diesel engine con-

ditions. The high-dimensional data were pre-pro-

cessed by manifold learning to reduce data dimen-

sionality and complexity, and the processed data

were input into the iforest model to detect the faults

of the marine diesel engine.

1 Description of the fault monitor-
ing method

In this section, we specifically describe the prin-

ciples of manifold learning and iforest algorithms

and build machine learning-based fault monitoring

models with Python. Packages and databases such

as numpy, pandas, and scikit-learn were used to fa-

cilitate the construction of fault monitoring models

based on manifold learning and iforest.

1.1 Manifold learning

In topology, manifold is a local topological space

with Euclidean geometry or a collection of points in

space. Manifold can be simply interpreted as the

generalization of curves in two-dimensional space

and surfaces in three-dimensional space to higher

dimensional spaces. The main idea of manifold

learning is to map high-dimensional data to low-di-

mensional data so that the low-dimensional data

can reflect some essential structural characteristics

of the original high-dimensional data. The assump-

tion of manifold learning is that high-dimensional

data can be obtained by embedding a low-dimen-

sional manifold structure into a high-dimensional

space. The purpose of manifold learning is to map

the data back to the low-dimensional space, thus en-

abling the simplification and visualization of the

original high-dimensional data. In fault monitoring,

manifold learning is a key step in data preprocess-

ing to reduce the dimension and extract the features

of the original data.

1.1.1 MDS

MDS is an unsupervised linear dimensionality re-

duction method that, based on the similarity of sam-

ple pairs, constructs a low-dimensional space that

maximizes the similarity in sample distance be-

tween low- and high-dimensional spaces. After di-

mensionality reduction, the distance between any

two points in the low-dimensional space should be

the same as the distance in the original high-dimen-

sional space. Assume that n points in a p-dimension-

al space form the matrix X = {x1, x2, ..., xi, ..., xj, ...,

xn}, and xn ∈ Rp means that the dimension of x in

space R is p. The Euclidean distance between two

points satisfies the following equation:

（1）

Z is the matrix after dimensionality reduction,

and Z = z1, z2, ..., zn, zn ∈ Rp′ , where p' is the dimen-

sion of the matrix after reduction. Zero-mean nor-

malization is performed for each component of Z. B

is the inner product matrix composed of bij and sat-

isfies the following equation:

（2）

X and Z have the same Euclidean distance. There-

fore, bij and dij satisfy the following equations:

（3）

（4）

Z is re-centralized to yield , and

, from which Equation (5) can

be derived:

（5）

Z is an n × p' matrix (p' is a non-negative eigen-

value), and the rank of B satisfies the following

equation:

（6）

B is a symmetric positive-semidefinite matrix

with non-negative eigenvalue p' and zero eigenval-

ue n - p′. Therefore, B can be expressed as

（7）
where , and λ is the eigenvalue

of B; , and γ is the eigenvector cor-

responding to the eigenvalue λ of B. Therefore, Z

satisfies the following equation:

80

downloaded from www.ship-research.com



（8）

1.1.2 LLE

Unlike MDS, the core idea of LLE is that each

sample point can be approximately reconstructed by

a linear combination of adjacent points, which is

equivalent to an approximation of complex geome-

tries with segmented linear patches. This linear rela-

tionship in reconstruction should be maintained af-

ter the sample is projected to the low-dimensional

space, and thus the reconstruction coefficients re-

main unchanged. The LLE algorithm can be imple-

mented in three steps. First, k nearest neighbors of

each sample point are identified. Then, the local re-

construction weight matrix of each sample point is

calculated from its nearest neighbors. Finally, the

output of the sample point is calculated by the local

reconstruction weight matrix and its nearest neigh-

bors. We assume that xi can be expressed as xj, xk,

and xl:

（9）

where, wij, wik, and wil are weight coefficients.

The initial point is reconstructed by a linear com-

bination with weight coefficient wij. The reconstruc-

tion error is represented by the cost function E(w),

which satisfies the following equation:

（10）

（11）

Z is a dimension-reduced matrix and its data are

in a d-dimensional space. The original points are in

a D-dimensional space, and D > d. The LLE algo-

rithm maintains the same weight coefficients wij of

data in the d-dimensional space. xj corresponds to zj

in the low-dimensional space, and satisfies the fol-

lowing equation:

（12）

This optimization is equivalent to solving the ei-

genvalue of a sparse matrix. If the sparse matrix is

M and Z = (z1, z2, ..., zm) ∈ Rd×m, M satisfies the fol-

lowing equations:

（13）

（14）

where ZT consisting of eigenvectors can be obtained

from the minimum eigenvalue d of Z; I is the

identity matrix, and W is the matrix of weight

coefficients wij.

1.1.3 TSNE

TSNE is an algorithm for reducing the dimen-

sionality of nonlinear data by mapping them to

probability distribution through affine transforma-

tion. The data in the original space are represented

by Gaussian joint probability, and the data in the

embedding space are represented by t-distribution.

First, the TSNE algorithm constructs a probability

distribution of high-dimensional objects so that sim-

ilar objects are more likely to be selected than dis-

similar objects. Second, TSNE defines a similar

probability distribution of points in the low-dimen-

sional space, which maximizes the similarity of

probability distributions in the high-and low-dimen-

sional spaces.

Given N high-dimensional objects, TSNE first

converts the Euclidean distance into probability pij

to represent the similarity between xi and xj:

（15）

（16）

where σi is the Gaussian variance of the data point

xi; pj/i and pi/j are cost function parameters, and pij is

the high-dimensional distribution probability be-

tween xi and xj.

TSNE aims to obtain a d-dimensional map y1,

y2, ..., yn (yn ∈ Rd) that reflects pij as well as possible.

With a similar method, the similarity qij is measured

by low-dimensional data points yi and yj correspond-

ing to the high-dimensional data points xi and xj.

The qij is defined as

（17）

If the dimensionality reduction is satisfactory and

the data features are basically the same, pij = qij. The

objective function C is expressed as the KL diver-

gence between distribution Q and distribution P:

（18）

The gradient descent method is used to minimize

the KL divergence:

（19）

The Gaussian distribution can be initialized to a

smaller value σ. To speed up the optimization pro-

cess and avoid local optimal solutions, we should

use a larger momentum in the gradient:

（20）

where Y(t) is the value after iterating for t times; η is
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the learning efficiency, and α(t) is the momentum

after iterating for t times.

1.2 iforest

The iforest algorithm uses a large number of bina-

ry trees, and it is an anomaly detection algorithm

based on partition isolation and ensemble learning,

without the need to model fault condition data. The

core idea of iforest is to identify abnormal data by

constructing binary trees because the abnormal data

are relatively isolated from the normal data. Usual-

ly, only a few partitions are needed to separate the

abnormal data and identify them as outliers. In the

iforest model, binary trees are used for data parti-

tioning, and the depth of the datapoint in binary

trees reflects the "isolation" of the data. This algo-

rithm introduces the concepts of isolation trees and

average path length. The algorithm is roughly divid-

ed into two stages:

1) In the training stage, multiple subsamples are

extracted from the training dataset to construct bina-

ry trees.

2) In the testing stage, the samples are passed by

isolation trees to obtain the anomaly score of each

test sample.

In the training stage, iforest algorithm is closely

related to subspace anomaly detection. One data

sample (n instances from d-variable distribution) is

used to build one binary tree. A batch of samples is

extracted from the whole data, and then a feature is

randomly selected as the root node. A value is ran-

domly selected between the maximum and mini-

mum values of the feature. Sample data less than

this value are assigned to the left branch and the re-

maining data to the right branch. After that, the

above steps are repeated in the left and right data

branches until the following conditions are met:

1) The data cannot be subdivided, namely that on-

ly one data point is present, or all data are the same;

2) The binary tree reaches a preset maximum

depth.

In the testing stage, average path length and

anomaly score are used to detect the anomalies. To

calculate the anomaly score of data x, we should

first estimate its path length (depth) in each binary

tree. Along a binary tree, the path starts from the

root node and goes down according to the values of

different features until reaching a leaf node. The

path length of x, h(x), is measured by the number of

edges, and the anomaly score can be expressed by s:

（21）

（22）

（23）

where ε =0.577 215 664 9, is the Euler's constant;

c(n) is the parameter used to normalize the path

length h(x) of sample data x; E(h(x)) is the average

path length of x in binary tree ensemble; s(x, n) is

the anomaly score of x obtained from the binary

trees of n sample training data, and the range of

s(x, n) is [0, 1]:

1) If E(h(x)) is close to 0, and s is very close to 1,

x is probably abnormal.

2) If E(h(x)) is close to n - 1, and s is very close

to 0, x is probably normal.

3) If E(h(x)) is close to c(n) and all s values are

around 0.5, there is no obvious outlier in the whole

sample data.

2 Fault monitoring method based
on manifold learning and iforest

In the engine room, equipment that requires con-

dition monitoring includes the main propulsion die-

sel engine, power generation diesel engine, shaft

system, propulsion control system, important auxil-

iary machinery, important pumps and motors, and

anchor windlass. The main propulsion diesel engine

is the heart of a ship, and its safe and reliable opera-

tion directly determines the safety of ship naviga-

tion. The main propulsion diesel engine is not only

the most important mechanical equipment of a ship

but also the equipment with the highest failure rate

among all mechanical systems. The study on ship

failure risk by the Swedish Club shows that main

diesel engine failure accounts for 37.7% of total

ship mechanical failure, and causes a total annual

economic loss of about 202 million US dollars [16].

Therefore, it is important to reduce the failure rate

of the main diesel engine system to ensure safe nav-

igation. In this paper, the main diesel engine was

used as the typical equipment in the marine engine

room to study the intelligent fault monitoring meth-

od based on manifold learning and iforest.

It is not feasible to input raw data directly into

the iforest model because the multidimensional raw

data cause a curse of dimensionality and reduce the

performance of fault monitoring if the model is

trained directly. In the data pre-processing stage,

suitable data features can be selected by human ex-

perience. We used manifold learning for dimension-

ality reduction of the original data, and there is no

need for expert knowledge. By selecting and fusing
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the features of the original data through manifold

learning, we can reduce the complexity of the origi-

nal data structure and construct new eigenvectors

while retaining as much useful information as possi-

ble. Therefore, iforest model can be trained with

less computational effort and only with the normal

working condition dataset. The iforest model calcu-

lates the average path length for each normal condi-

tion point and sets the threshold by assuming that

there are a small number of outliers in the normal

condition data. Therefore, the normal and fault con-

dition data of the test dataset can be classified. The

iforest model is more suitable for fault monitoring

in industrial design because it does not require fault

condition data to train the fault monitoring model.

The fault monitoring method based on manifold

learning and iforest is shown in Fig. 1. Firstly, mani-

fold learning is used in data preprocessing for fea-

ture selection and fusion. Secondly, the iforest mod-

el is trained with low-dimensional data for fault

monitoring. Finally, model performance is evaluat-

ed using the fault detection rate (FDR) and false

alarm rate (FAR).

Fig. 1 Procedures of the manifold learning-iforest monitoring scheme

3 Faults monitoring based on sim-
ulation system of marine diesel
engines

3.1 Simulation system of marine diesel
engines

The fault monitoring method based on manifold

learning and iforest requires diesel engine state data

for model training and testing. Due to the lack of

historical monitoring data of marine diesel engines

and the serious damage caused by destructive tests

to the diesel engines, the fault sample data of ma-

rine diesel engines are too scarce to test and evalu-

ate the model. In this paper, the two-stroke marine

diesel engine (7K98MC) was modeled and simulat-

ed in Matlab/Simulink, and its cylinder was simulat-

ed by a zero-dimensional model [17]. The simulation

results of the diesel engine model were compared

with the data from the shop test to determine the ac-

curacy of the simulation model. The technical speci-

fications of the 7K98MC marine two-stroke diesel

engine are shown in Table 1, and the simulation

model is shown in Fig. 2.

Table 1 Technical parameters of 7K98MC marine diesel

engine

Technical
specification

Value
Technical

specification
Value

Stroke/mm

Piston area/m2

Machine weight/t

Cylinder
diameter/mm

Maximum
power/kW

Maximum rated
speed

Maximum mean
indicated pressure/bar

Maximum explosion
pressure/bar

Turbocharger

Firing order

To verify the accuracy of the 7K98MC simula-

tion model, we compared the results of the simula-

tion under different loads with the shop test data

(Table 2).

As shown in Table 2, the model simulation re-

sults were consistent with the shop test, and the

maximum error (4.53%) was found in the turbine

speed of the diesel engine at 25% load. The errors

between the simulated and the experimental data of

other parameters were approximately 1%, which

A dataset composed of
high-dimensional features

Model training

Training data
(fault-free data)

Testing data
(fault-free data)

Testing data
(fault data)

Manifold
learning model

Feature
selection

Training data for
reconstructed features

Building of an iforest
model

FAR

Feature
selection

Feature
selection

FDR

Fault-free data for
reconstructed features

Fault data for
reconstructed features

Model
evaluation

Model test
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verified the rationality and correctness of the simu-

lation model of marine diesel engines.

3.2 Data description

The simulation model of 7K98MC was studied at

94 r/min and 100% load. The fault condition of the

diesel engine was simulated by changing the com-

pressor efficiency, cooler efficiency, and fuel injec-

tion time. Each working condition was described by

15 features, including effective power, effective fu-

el consumption rate, air-fuel ratio, maximum cylin-

der explosion pressure, maximum cylinder combus-

tion temperature, compressor inlet pressure, com-

pressor outlet temperature, intercooler outlet tem-

perature, scavenging box pressure, scavenging box

temperature, exhaust pipe pressure, exhaust pipe

temperature, turbine outlet pressure, turbine outlet

temperature, and turbine speed. The diesel-engine

simulation model was running for about 30 min be-

fore stabilization, and the model was running for a

total of nearly 200 h. A total of 700 samples under

normal and fault conditions were collected. The da-

ta are described in Table 3.

Table 3 Simulation datasets

Category Working condition

Normal

Compressor failure

Air Cooler failure

Fuel injection timing error

Number of
features

Number of
samples

In this study, the training dataset consisting of

200 normal condition samples was used to build a

fault monitoring model based on manifold learning

and iforest. The testing dataset consisted of 500

samples, including 200 samples under normal con-

ditions and 300 samples under fault conditions (die-

sel engine compressor failure, cooler failure, and fu-

el injection timing error). The testing dataset was

used to assess and compare the performance of dif-

Fig. 2 Simulation model of 7K98MC marine diesel engine

Set speed Time

Governor

Environmental
variable

Exhaust
system

Turbine

Output

Propeller
systemCrankshaft

T/C
shaft
system

Air
cylinder

Scavenging
box

Compressor

Environmental
variable

Table 2 Comparison between simulation results and shop test data

Diesel engine
load/% Result

Simulated value

Experimental value

Error/%

Simulated value

Experimental value

Error/%

Simulated value

Experimental value

Error/%

Simulated value

Experimental value

Error/%

Power/kW
Fuel consumption/

Maximum
cylinder

explosion
pressure/bar

Cylinder
compression
pressure/bar

Turbine speed/
Scavenging

box
pressure/bar

Exhaust pipe
temperature/K
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ferent fault monitoring methods.

3.3 Data dimensionality reduction based
on manifold learning

Since the working condition of a diesel engine

can affect data features, the selection of features

that accurately describe the normal and fault condi-

tions of the diesel engine as well as the extraction

and fusion of representative features are critical to

diesel engine fault monitoring.

Dimensionality reduction based on manifold

learning accurately describes the features of equip-

ment in normal and abnormal working conditions

through selection and fusion, thus reducing the

number of features and the complexity of the origi-

nal dataset for subsequent efficient data processing

and classification. In this paper, a dataset consisting

of 15 features was used to construct a matrix. By

manifold learning, the 15-dimensional original data

were reduced to 2-dimensional data, and the two

fused features were used for fault monitoring. The

effects of data-feature dimensionality reduction by

manifold learning algorithms PCA, MDS, LLE, and

TSNE were assessed by data visualization. Fig. 3

shows the performance of different manifold learn-

ing algorithms in dimensionality reduction of the

same data. The dimensionality reduction of data

with the same distribution by different algorithms

was visualized. In Fig. 3, G1 represents the data un-

der normal conditions, and G2 represents the data

under fault conditions.

As shown in Fig. 3 (a), for the data with dimen-

sionality reduction by PCA, G1 and G2 partially

overlapped, indicating inefficient dimensionality re-

duction. From Fig. 3 (b) and (c), the MDS and LLE

algorithms had better classification of data under

different working conditions and thus better dimen-

sionality reduction than PCA. Meanwhile, LLE had

better feature extraction than MDS because the fea-

tures extracted by LLE had wider spacing between

datasets of different working conditions and could

be more easily distinguished. As shown in Fig. 3 (d),

the TSNE algorithm had the best dimensionality re-

duction, because the data from the same category

clustered together, while the data of different cate-

gories were located far apart and could be easily dis-

tinguished. As a data visualization tool, manifold

learning performed well in data dimensionality re-

duction and feature extraction, with the TSNE algo-

rithm having the best performance in feature selec-

tion.

3.4 Diesel engine fault monitoring based

on iforest algorithm

Feature selection methods such as PCA, MDS,

LLE, and TSNE were used to project the 15-dimen-

sional data into a 2-dimensional space. The selected

Fig. 3 Dimensionality reduction effect of different manifold

learning methods

G1
G2

G1
G2

G1
G2

G1
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and the fused features were input into the iforest

model to monitor the state of the diesel engine. To

verify the performance of iforest algorithm, we also

studied outlier monitoring methods RC and one-

class SVM.

The simulation data were used to study the fault

monitoring method based on manifold learning and

iforest. The training of the fault monitoring model

involved only the data under normal working condi-

tions (200 samples). The trained fault monitoring

model was used to identify new normal and fault

samples. The performance of the outlier monitoring

model based on manifold learning was verified by

calculating FAR and FDR. FAR is the ratio of the

number of normal samples misclassified as abnor-

mal samples to the total number of normal samples,

and FDR is the ratio of the number of correctly clas-

sified abnormal samples to the total number of ab-

normal samples. Therefore, larger FDR and smaller

FAR were associated with better performance of the

fault monitoring method.

The combination of different manifold learning

algorithms and outlier monitoring algorithms leads

to fault monitoring methods with different perfor-

mances. In this paper, the performance of different

fault monitoring approaches was compared in box-

plot (Fig. 4). The boxplot presents the minimum,

lower quartile, median, upper quartile, maximum,

and outliers, and evaluates the performance of fault

monitoring methods from multiple perspectives. Ta-

ble 4 shows the mean FDR and FAR for different

fault monitoring methods.

As shown in Fig. 4, the method based on TSNE

and iforest had the highest FDR, the lowest FAR,

and narrow box width, indicating high stability of

the monitoring method. Meanwhile, Table 4 shows

that the fault monitoring method based on TSNE

had the best performance with the same outlier

monitoring algorithms, which further illustrates that

TSNE had higher quality and lower loss in the di-

mensionality reduction of condition monitoring da-

ta of marine diesel engines.

The training of iforest model only requires the

sample dataset under normal conditions. The iforest

model calculates the average path length of each

normal condition sample and defines a threshold for

the classification of normal and abnormal data. Fig. 5

shows the threshold T1 obtained by calculating the

average path length of normal samples with the

fault monitoring methods combining different mani-

fold learning algorithms and iforest. As shown in

Fig. 5, the T1 obtained by TSNE-iforest was the

best. Only a small number of normal condition sam-

ples were misclassified as abnormal condition sam-

ples, and all abnormal condition samples were cor-

rectly classified.

Table 4 Mean FDR and FAR under different hybrid fault

monitoring schemes

Fig. 4 Comparison of FDR and FAR under different hybrid

fault monitoring schemes

Fault detection scheme

Fault detection scheme

Method
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4 Conclusions

To address the actual needs of marine engine

room equipment, in this paper we proposed a diesel

engine fault monitoring method based on the combi-

nation of manifold learning and outlier monitoring.

The performance of this fault monitoring method

was validated by condition data generated from a

simulation model of marine diesel engines. The re-

sults are as follows:

1) Compared with PCA, manifold learning algo-

rithms such as MDS, LLE, and TSNE effectively re-

duced the original 15-dimensional data to 2-dimen-

sional data. In the data preprocessing stage, mani-

fold learning greatly reduced the complexity of the

original data and improved the performance of the

fault monitoring model. TSNE algorithm had the

best data dimensionality reduction effect.

2) Compared with fault monitoring algorithms

such as RC and one-class SVM, iforest had higher

FDR and lower FAR, and only required data from

normal working conditions for training models and

monitoring marine diesel engine faults.

3) Fault monitoring method based on TSNE and

iforest yielded a suitable threshold value that accu-

rately classified normal condition data and fault

condition data.

The method based on TSNE and iforest effective-

ly improved the accuracy and reliability of marine

diesel engine fault monitoring. This method uses on-

ly normal condition samples for fault monitoring

and is more suitable for the actual working condi-

tions of marine engine room equipment. Moreover,

the method has high diagnostic stability and thereby

possesses both theoretical and applied reference im-

plications.
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基于机器学习的船舶机舱设备
状态监测方法

王瑞涵 1，2，陈辉*1，2，管聪 1，2

1 武汉理工大学 能源与动力工程学院，湖北 武汉 430063

2 武汉理工大学 高性能舰船技术教育部重点实验室，湖北 武汉 430063

摘 要：［目的目的］为实现船舶机舱设备的智能状态监测，引入机器学习算法，提出一种结合流形学习和孤立森林

的船舶机舱设备状态监测方法。［方法方法］由于船舶机舱设备的状态监测数据是多维度数据，基于该监测系统，通

过流形学习来提取有效的数据特征，实现对原始数据的降维，减少数据复杂度。基于孤立森林算法，在仅利用

正常工况数据集的情况下，训练并构建多个子森林检测器，用于实现对目标设备的故障监测。在 Matlab/Simu-

link 环境下建立大型船舶二冲程柴油机模型，对其正常工况和故障工况下的数据进行仿真，以验证该方案的有

效性。［结果结果］ 通过状态仿真数据对不同故障监测方案性能的比较，验证了所提故障监测方案具有 98.5% 的故

障检测率和 3% 的故障虚警率。［结论结论］所提方法能显著提高船舶机舱设备的故障监测性能。

关键词：船舶柴油机；故障监测；流形学习；孤立森林
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