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0 Introduction

The study of the collision between structures and

ice has received widespread attention in the fields

of the design and manufacture of structures for ice

regions, the development and utilization of resourc-

es in polar regions, and the safe navigation and op-

eration of ships and structures in ice regions. Cur-

rently, the methods extensively used for the study

of structure-ice collisions include the discrete ele-

ment method [1-2] and the finite element method [3].

Thereinto, the discrete element method has certain

advantages in the study of ice crack propagation,

but it is not sufficient for the study of sea ice defor-

mation; the finite element method is relatively ma-

ture for the simulation of sea ice and structural de-

formation, but it is not accurate for the simulation

of ice crack propagation. For this reason, some re-
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searchers applied the cohesive element method

(CEM) to the simulation of ice cracks. The CEM is

a dedicated finite element method of simulating

crack initiation and propagation in numerical mod-

els, and it can be traced back to the development

and study of the Dugdale-Barenblatt (D-B) [4-5] mod-

el of crack tips by researchers. The original idea for

the cohesion model is the atomic traction-separation

law proposed by Barenblatt [5], and the law could be

applied to avoid unrealistic stress singularities at

the crack tip. Later, Dugdale [4] used the cohesion

model to describe the plastic deformation of an ide-

al elastoplastic material subjected to normal stress

in the vicinity of the crack tip. Then, Needleman [6]

referred to the crack region in the D-B model as the

cohesive zone. The cohesion model has been im-

proved by many researchers and has been applied in

many fields. Compared with other crack calculation

models, the cohesion model has the advantage of

being able to simulate multiple crack paths and thus

save the effort of crack path tracking. In addition,

the propagation of the crack path can be simulated

by arbitrarily placing cohesive elements without

knowing the direction of crack propagation in ad-

vance. This paper focuses on the application of the

CEM in ice crack propagation as it is of great signif-

icance for the design and manufacture of structures

in ice regions.

Due to its advantages in crack propagation and

material fracture, the cohesion model has increas-

ingly been applied to the simulation of ice mechan-

ics and structure-ice collisions in recent years. For

example, Mulmule [7] and Dempsey [8] used the ice

material with the modeⅠ fracture pattern to inverse-

ly calculate the cohesion law; Kuutti et al. [9] simu-

lated the experimental collision between vertical

steel plates and thick ice blocks by inserting two-

dimensional cohesive elements around the triangu-

lar ice elements and found that the finite element

model with dense meshes could better simulate the

failure process of the ice blocks in the experiment;

both Lu et al. [10] and Wang et al. [11] employed the

CEM to simulate the collision between cones and lev-

el ice; Wang et al. [12], Liu et al. [13], and Jiang et al. [14]

applied the CEM to simulate the collision of flat ice

with vertical cylinders, offshore platforms, and oth-

er offshore structures and verified the reliability of

the CEM in dealing with such collision problems.

Currently, although the CEM has been applied to

the study of structure-ice interaction, the cohesive

zone length formula for ice is rarely investigated.

Some researchers directly adopted the formulas for

other materials. For example, Lu et al. [10] prelimi-

narily estimated the cohesive zone length with the

formula for elastic material and an ice crack experi-

ment. However, most researchers have not paid at-

tention to the calculation of the cohesive zone

length. For example, Gürtner et al. [15], Kuutti et al. [9],

and Wang et al. [11] all failed to mention the relation-

ship between cohesive zone length and meshes and

mostly adopted the trial-and-error method for mesh

division when they were dealing with various

structure-ice collision problems. In fact, the results

of research on other materials are not necessarily

applicable to ice, and previous studies of cohesive

zone length have mainly focused on small-thickness

models [16-17], such as the interlayer of composite

materials, with little attention paid to large-thickness

models. In terms of ice fracture pattern, ice is usu-

ally a large-thickness model, so the existing cohe-

sive zone length applicable to thin plates no longer

applies to ice.

Regarding the deficiencies in the above studies,

this paper presents a new applicability study of co-

hesive zone length calculation and mesh division of

ice materials. Specifically, the existing cohesive

zone length formula was reproduced, derived, and

modified; then, simulation was conducted with a nu-

merical model of a double cantilever beam built by

the finite element method to study the mesh density

of the finite element model within the length of a

single cohesive zone; finally, the relevant results

were applied to a three-point bending experiment of

ice with the LS-DYNA software to verify the validi-

ty of the CEM in simulating the modeⅠcrack initia-

tion and propagation in ice. This paper is expected

to promote the application of the CEM in the study

of the mechanical properties of ice materials.

1 Cohesive zone length formula and
its principle

The CEM has been mainly applied to concrete

structures and composite materials after it was pro-

posed. It demonstrates excellent crack simulation

capability. Specifically, it can visually simulate the

process of cracking and failure, such as opening,

sliding, and tearing, of materials, and well simulate

the cracking process of concrete and the delamina-

tion failure process of composite materials. At pres-

ent, the common traction-separation relationship

controlling the cohesive zone has four forms: bilin-

ear [18], polynomial [19], trapezoidal[20], and exponen-
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tial [21] (Fig. 1). In the figure, σ0 is the maximum

stress of crack formation, δn is the upper and lower

surface displacement corresponding to damage initi-

ation, δf is the upper and lower surface displace-

ment corresponding to the initiation of the linear de-

cline in the "trapezoidal" stress, and δ0 is the maxi-

mum upper and lower surface displacement at the

time of crack formation.

Bilinear
Exponential
Trapezoidal
Polynomial

Fig. 1 Traction-separation curves

Fig. 2 presents the directions of cohesion models

of different materials. In the figure, the crack propa-

gation direction is defined as the length direction,

while the crack opening direction is defined as the

thickness direction. The comparison of the two fig-

ures indicates that sea ice is a typical large-thickness

model.

The cohesive zone length can be derived with the

J-integral. The J-integral, a path-independent inte-

gral in elastoplastic fracture mechanics [22], can be

used as an average measure of the strain field at the

top of a crack or notch. In this paper, the model of a

double cantilever beam with opening failure was ap-

plied to briefly describe the process of deriving the

length of the crack propagation zone (Fig. 3). In the

figure, Lcz is the length of the crack propagation

zone (namely, the cohesive zone length), L is the

length of the double cantilever beam without the ini-

tial crack, Lpc is the length of the initial crack, L0 is

the length of the entire double cantilever beam, and

h is the thickness of a single cantilever beam. The

initial crack at the left end of the double cantilever

beam was used to constrain the generation position

and propagation direction of the crack, and the ex-

ternal torque M was applied to the left end of the

double cantilever beam.

Fig. 3 Tearing of double cantilever beam

The loop integral of the J-integral is defined by

the following equation [22]:

（1）

where w is the strain energy density; Γ is the curve

that begins to rotate counterclockwise from a point

on the lower surface of the crack to any point on its

upper surface; (x′, y′) is the coordinate of a point on

the curve; T̄ is the stress vector on the integral loop;

ū is the displacement vector at each point in the

loop; ds is the line element along the loop.

The double cantilever beam model shown in Fig. 3,

Eq. (1), and the conservation of J-integral together

support the following equation:

（2）

where is the relationship between the

external torque M and the stress in the crack, with

the dimensionless coefficient a related to L and h.

The above equation is derived without considering

the initial energy under the condition that the length-

to-thickness ratio L/h is larger than one. In the equa-

tion, the first term is the work done by the external

NI B Y, et al. Application of improved cohesive zone length formula in ice mode I crack propagation

Crack propagation
direction/length direction

Crack opening direction/
thickness direction

Crack opening direction/
thickness direction

Crack propagation
direction/length direction

(a) Cohesion model of composite materials (low thickness)

(b) Cohesion model of sea ice (high thickness)

Fig. 2 Direction definition for cohesion models of different

materials
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torque M, and the latter term is the energy within

the structure. The two are equal without considering

the body force and unloading. The relationship be-

tween the external torque M and the stress in the

crack is substituted into Eq. (2) for further simplifi-

cation, thus obtaining

（3）

All the constant coefficients (terms containing

the dimensionless coefficient a and constant terms)

can be unified and replaced with characters to gen-

eralize the formula. For this purpose, Eq. (3) can be

further transformed into

（4）

where c is the dimensionless coefficient related to L

and h.

Eq. (4) can be further simplified as

（5）

where

（6）

Hillerborg et al. [23] derived the relationship of the

length of the original crack propagation zone with

the crack displacement and stress with the D-B

model as

（7）

where f is the maximum stress at the time of crack

formation and is equivalent to σ0 in Eq. (6), that is,

f = σ0; G = kδ0f is the fracture energy release rate

with a constant k. Applicable to modeⅠand mode Ⅱ
fracture patterns, G can be interpreted as the area

enclosed by each curve and the coordinate system in

Fig. 1, and it can also be expressed as the product

of the maximum stress, the maximum strain, and a

constant. A comparison between Eq. (6) and Eq. (7)

reveals that the in Ref. [23] is consistent with c2

in Eq. (6) and is equally applicable to tearing (mode Ⅰ
tensile failure of cohesive elements) failure. There-

fore, Eq. (5) can be modified as

（8）

The above derivation is originally for the crack

propagation and the calculation of the crack zone

length of composite materials. However, since the

type and properties of the material are not restrict-

ed, the above-mentioned idea of crack description

also applies to the modeⅠcrack initiation and prop-

agation in ice. The bilinear δ -σ curve mentioned in

Ref. [23] is suitable for such brittle or quasi-brittle

materials as concrete. This paper also used the bilin-

ear δ - σ curve for ice mechanics simulation by the

CEM.

The selection of the coefficient c1 is a major diffi-

culty in the application of Eq. (8). Previous related

researchers mainly focused on thin plate models

and recommended different values, such as 0.5 [24],

π/8, 0.731, and 2.92 [25], for c1 according to material

properties and the constitutive relation of the cohe-

sion model. However, all these parameters are sim-

ple fixed values, ignoring the feature of c1 that it

varies with model size. Moreover, they are only

readily applicable to thin plate materials with small

thicknesses (Fig. 2 (a)). In contrast, their applicabili-

ty to ice materials with large thicknesses (Fig. 2 (b))

has not been reported by relevant literature. There-

fore, the value of the coefficient c1 applied to ice

materials is discussed in this paper.

2 Cohesive zone length applied to
ice materials

In this paper, the change law of the cohesive zone

length Lcz with model size was discussed before a

modified formula of the coefficient c1 was present-

ed. Two values were concerned here, namely, the

thickness h and the length-to-thickness ratio L/h. In

the finite element model, the failure of the elements

can be judged by whether the stress on the elements

or strain of the elements exceeds the set value in the

model [26]. In this paper, the deformation displace-

ment of the cohesive elements was calculated by

tracking the coordinates of the element nodes at

each moment. In light of the displacement law, the

change in the node's coordinates was used to deter-

mine whether the cohesive element was in an irre-

versible deformation state, and the failure of the co-

hesive element was further determined according to

the traction-separation curve (Fig. 1). The time in-

terval of coordinate data output was reduced as

much as possible and finally set to 5 × 10-5 s to re-

duce the error.

A numerical model of a double cantilever beam

was built, with the entire length L0=150 mm of the

double cantilever and the thickness h =1.55 mm of

a single cantilever beam. The force-bearing end of

the model has a notch with an initial crack length

Lpc=35 mm, and the length of the double cantilever

beam without initial cracks is L=115 mm. The crack

propagation length was set to the cohesive zone

length Lcz, and the double cantilever beam was sub-

4



downloaded from www.ship-research.com

jected to tensile forces F of equal magnitude in op-

posite directions. The tensile deformation of the co-

hesive element in the model is shown in Fig. 4. The

figure reveals that when the loading time increases

from 0 s to 0.35 s, tensile deformation of the cohe-

sive element gradually takes place as the force load-

ing continues, and when the loading time reaches

0.5 s, the cohesive element reaches its force-bearing

limit and fails.

(a) Before loading (t=0 s)

(b) During loading (t=0.35 s)

(c) Failure (t=0.5 s)

Fig. 4 Tensile deformation of cohesive elements

The variation curve of the cohesive zone length

Lcz with the thickness h of a single cantilever beam

during the failure of the double cantilever beam was

plotted (Fig. 5) under an invariant initial crack

length Lpc=35 mm and a variable length L(115, 100,

and 85 mm) of the double cantilever beam without

initial cracks. The variation curve of Lcz with Ln(L/h)

was further plotted (Fig. 6).

In Fig. 5, the overall cohesive zone length Lcz in-

creases gradually with the increase in the length L

of the double cantilever beam without initial cracks.

As the thickness h of the single cantilever beam in-

creases, the change rate of Lcz relative to the in-

crease in h decreases gradually. When h increases to

a certain value, Lcz basically stops changing. Never-

theless, h affects the change in Lcz under a low

thickness significantly.

According to Fig. 6, the influence of the increase

in the length-to-thickness ratio L/h on Lcz also dem-

onstrates an obvious downward trend. When L/h >

30 (Ln(30) ≈ 3.40), Lcz basically no longer changes;

when L/h decreases, Lcz gradually becomes sensi-

tive to the change in L/h; when L/h further decreas-

es to L/h<1.25 (Ln(1.25) ≈0.223), Lcz fluctuates

around a certain stable value again, and the point

where this phenomenon occurs is called the inflec-

tion point in this paper. Regarding the three models

of the double cantilever beam without initial cracks

of different lengths L, L/h is all around 1.25 when

the inflection point appears. Fig. 5 and Fig. 6 indi-

cate that when L/h is in the range of 1.25 to 30, Lcz

is clearly affected by the change in L/h; when L/h is

not within this range, its effect on Lcz is relatively

small.

3 Modification of cohesive zone
length formula

At present, the CEM is mainly applied to the

study of the mechanical properties of thin compos-

ite materials with large L/h[16]. The coefficient modi-

fication of the cohesive zone length formula mainly

involves constant term modification, without con-

sidering the phenomenon that the cohesive zone

length no longer changes with thickness when the

length-to-thickness ratio L/h changes from 1.25 to 1.

In the actual simulation, however, the inflection

point of the variation of the cohesive zone length,

that is, the phenomenon that the change in the cohe-Fig. 5 Lcz-h curve

Fig. 6 Lcz-Ln((L/h) curve

NI B Y, et al. Application of improved cohesive zone length formula in ice mode I crack propagation 5
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sive zone length is no longer obvious after L/h

reaches a certain value, should be considered. This

paper attempts to modify the coefficient c1 on the

basis of previous studies and correlate it with the

change in L/h to improve the accuracy of the cohe-

sive zone length formula.

According to the models of the double cantilever

beam without initial cracks of different lengths L,

the value range of L/h larger than 1.25 was selected,

and c1 was assumed to be a function of L and h.

Then, the Lcz-h scatter points in the simulation were

fitted several times according to Eq. (8) to establish

the relationship between c1 and L/h. The following

equation can be obtained by data fitting and sorting:

（9）

Substituting it into Eq. (8), a new cohesive zone

length formula can be obtained as

（10）

where x is the current value of L/h; hmin is the mini-

mum model thickness simulated. When hmin is much

smaller than the length of the model, it has little in-

fluence on the calculation result. For ice materials,

no relevant calculation has been found so far. In this

paper, hmin=1.5 mm was selected with reference to

the values of composite materials in Ref. [5] and

Ref. [16]. For the mode Ⅰ crack initiation and prop-

agation in ice, σ0 was taken as the tensile strength of

the ice, and its value was selected with reference to

the tensile test of ice [27]. In addition, as mentioned

in the previous section, the cohesive zone length ba-

sically stops changing after the inflection point ap-

pears. Therefore, this formula is only applicable to

the case where L/h is larger than 1.25. For the case

where L/h is smaller than 1.25, the cohesive zone

length corresponding to L/h =1.25 was taken.

The effectiveness of the modification of the coef-

ficient c1 on the result of cohesive zone calculation

was verified as follows. Numerical models of large-

thickness double cantilever beams were reconstruct-

ed (Fig. 7). Their width B is 20 mm; their length L

are respectively 70 and 210 mm; Lpc is still 35 mm;

their thickness 2h changes continuously. Certain

scatter points in the range of L/h from 1 to 150 were

selected properly to plot the corresponding curves,

and the model calculation results were compared

with the results of the modified formula (Fig. 8).

Fig. 7 Double cantilever beam model with large thickness

Fig. 8 shows that regarding the two models of dif-

ferent sizes, the simulation results of the modified

model well agree with the direct simulation results

over the whole value range of L/h. The analysis not

only verifies the validity of the formula but also in-

dicates that the cohesive zone length at the inflec-

tion point (L/h = 1.25, namely, the position of the

dotted lines in Fig. 8 (a)) is related to the entire

length of the double cantilever beam model as well.

With the increases in the entire length and the cohe-

sive zone length, the error between the calculation

results of the formula and the simulation results

gradually decreases, which is particularly evident in

the range in which L/h is small.

4 Application of modified formula
on ice materials

The mesh density determines the calculation

amount. A higher density of cohesive elements in

the cohesive zone length Lcz leads to smoother

crack formation and force curve and higher accura-

cy. Otherwise, the force curve is more likely to

have jagged fluctuations. The process of crack for-

mation and force transmission can be well simulat-

ed when an appropriate number is set for the cohe-

sive elements within a single cohesive zone. With

the above-mentioned Lcz calculation method, this

section focuses on the modeⅠ tensile failure of the

cohesive elements to study the number of cohesive

elements that should be arranged in one Lcz, namely,

Lcz = mSc (where Sc is the size of one cohesive ele-

ment and m is the number of the elements).

6
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The main dimensions (L × B × 2h) of the narrow

double cantilever beam model in this section are

150 mm × 20 mm × 3.1 mm (Fig. 9). The ice param-

eters are as follows: an elastic modulus of 5.72 GPa,

a shear modulus of 2.2 GPa, a hardening modulus

of 4.26 GPa, a volume modulus of 5.26 GPa, and a

velocity of upper and lower traction of 0.004 m/s.

The mesh size is successively refined from 2.0 mm

to 0.5 mm with an interval of 0.05 mm. The mode Ⅰ
tensile failure process of the cohesive elements be-

tween the narrow double cantilever beam was simu-

lated under tension drive, and the effects of mesh

density on the failure tension and displacement

curves were tested under different mesh densities,

with the results shown in Fig. 10.

As can be seen from Fig. 10, the curve of the trac-

tion to be transmitted by the cohesive elements with

time gradually tends to smooth out as the meshes

are refined. The overall fluctuation gradually flat-

tens out, and the value gradually approaches the

middle. With the cohesive zone length Lcz=2 mm

calculated from Eq. (10) and the above model data,

a cohesive zone length of around 2 mm was ob-

tained by actual simulation.

According to the distribution of traction-time curves

under different mesh densities shown in Fig. 10, the

fluctuation of the curve is basically acceptable, and

the calculation amount required in the case of a

mesh density of 0.5 mm is also acceptable when the

mesh size is less than or equal to 0.5 mm. In sum-

mary, at least four cohesive elements in one cohe-

sive zone length are required to describe the frac-

ture process of the material accurately under the

modeⅠ tensile failure of the cohesive elements. In

this case, the accuracy and stability of the load

curve are also well guaranteed.

After the accuracy of the relationship between

the mesh length and the model size of the CEM was

Fig. 8 Comparison of simulation results with modified cohesive zone lengths

curve

curve

Direct simulation result
Simulation result of
modified model

Direct simulation result
Simulation result of
modified model

Direct simulation result
Simulation result of
modified model

Direct simulation result
Simulation result of
modified model

Fig. 9 Main dimensions of narrow double cantilever

beam model

NI B Y, et al. Application of improved cohesive zone length formula in ice mode I crack propagation 7
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theoretically deduced and numerically verified, the

CEM was employed for a numerical simulation of

the three-point bending experiment of ice, thereby

presenting the ice change process from deformation

to failure. The main dimensions (L × B × 2h) of the

numerical model [28] are 70 mm × 70 mm × 650 mm,

and the distance between the fulcrums is 600 mm, as

shown in Fig. 11. The relevant parameters are pre-

sented in Table 1.The numerical model was built ac-

cording to the actual experimental model, and the

values of ice parameters are derived from the exper-

imental results.

Fig. 11 Main dimensions of ice specimen model

Table 1 Experimental parameters

Parameter Value

Density

Young's modulus

Bending strength

Poisson's ratio

Temperature

Strain rate

Ultimate load

Ultimate deflection

Loading duration

For favorable mesh stability and accurate calcula-

tion results, the required cohesive zone length Lcz

was calculated from Eq. (10). In accordance with

the crack propagation direction and the definition of

the above-mentioned thickness direction in the co-

hesive zone length formula, the length-to-thickness

ratio L/h of the three-point bending experiment

model was determined to be about 0.215, which

was significantly smaller than the L/h value of 1.25

at the inflection point. Therefore, the Lcz value at

the inflection point was adopted. Lcz = 15.4 mm at

the inflection point was obtained by calculation,

and the maximum mesh size of the cohesive ele-

ments was 3.85 mm according to m = 4.

For the rounding-off mesh division, the length of

the cohesive elements in the crack propagation di-

rection was set to 3.5 mm, and that of the cohesive

elements perpendicular to the crack propagation di-

rection was set to 4.5 mm during calculation so that

a certain amount of calculation can be saved. Under

the above mesh density, the calculation step size is

3.68 × 10-7 s, and the calculation time is about 4 h.

A finite element model was constructed accord-

ing to the above experimental data and ice parame-

ters, and cohesive elements were added to the mid-

dle part of the specimen that is likely to crack, as

shown in Fig. 12. In the figure, the color red repre-

sents ice elements, while the color off-white is for

Amplitude of traction fluctuation

Time/s

T
ra

ct
io

n/
N

Amplitude of traction fluctuationT
ra

ct
io

n/
N

Time/s

Amplitude of traction fluctuation

Time/s

T
ra

ct
io

n/
N

Fig. 10 Traction-time curves of cohesive elements with

different mesh densities
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cohesive elements. The ice mechanics model only

provided deformation and force transmission, and it

was replaced by cohesive elements for ice failure

and separation. Therefore, the failure of the ice ele-

ments was not taken into account, and only the fail-

ure of the cohesive elements was considered. The

ice mechanics model was an isotropic linear elasto-

plastic model. The numerical simulation process is

shown in Fig. 13, and the crack form of the experi-

mental ice specimen is shown in Fig. 14.

Ice elements

Cohesive elements

Fig. 12 Cohesive elements between ice specimen sections

(a) During loading

(b) After fracture

Fig. 13 Finite element simulation of three-point bending

process

Fig. 14 Fracture of experimental ice specimen [28]

The ice model used in the numerical simulation

in this section is uniform. The traction law selected

for the cohesive elements was bilinear, and the orig-

inal defects in the ice specimen were not considered

in the construction of the ice mechanics model.

Therefore, the ice specimen shown in Fig. 13 has a

smooth fracture surface, resulting in smooth ice fail-

ure in the overall simulation process. According to

the deflection and pressure changes in the object in

the numerical simulation,pressure-deflection curves

were plotted (Fig. 15).

Deflection/mm
P

re
ss

ur
e/

N

Experimental data
CEM simulation data

Fig. 15 Pressure-deflection curves

In the experiment, the maximum force on the ice

specimen before failure is 1 127.9 N. The ultimate

load obtained by the three-point bending simulation

based on the CEM is 1 161 N, and the error at the

fracture point is thus 2.9%, representing closeness

to the experimental result. Regarding the different

stages of the pressure-deflection curves shown in

Fig. 15, the trend of the curve simulated by the

CEM is basically consistent with that of the experi-

mental curve. In terms of the final fracture deflec-

tion, the ultimate deflection corresponding to the

CEM is of a certain but small error to the experi-

mental data. In addition, since the ice mechanics

model selected for the numerical simulation is lin-

ear and the original defects are not considered in

the process of cohesive element creation, the curve

obtained by the simulation is smoother than the one

obtained with the experimental data. The compari-

son between the two curves reveals that the bending

deformation and failure processes of the ice speci-

men in the numerical simulation process are basically

consistent with those in the experiment. Moreover,

the brittleness of ice and the continuity of crack for-

mation are well reflected by the unloading process

after the peak. In summary, the results of the com-

parison between the simulation data and the experi-

mental data well verify the validity of the CEM and

the related mesh division method in simulating the

mechanical properties of ice.

5 Conclusion

Proceeding from the J-integral, this paper repro-

duced the derivation process of the cohesive zone

NI B Y, et al. Application of improved cohesive zone length formula in ice mode I crack propagation 9
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length formula on the basis of several assumptions

and relevant previous research results and added a

modified function related to the L/h value to the

original formula cohesive zone length formula. The

accuracy of the proposed cohesive zone length for-

mula was verified by the newly built numerical

high-thickness model of the double cantilever

beam, and the applicability of the formula to the ice

mechanics model was thereby solved. A finite ele-

ment model of the double cantilever beam was con-

structed for numerical simulation. The results show

that at least four cohesive elements in a cohesive

zone length are required to describe the fracture pro-

cess of the material accurately. Finally, the research

results were applied to the simulation of the three-

point bending experiment model. According to the

simulation results, the ultimate load error at the frac-

ture point is 2.9% and within the reasonable range,

verifying the validity of the modified cohesive zone

length formula in simulating the modeⅠcrack initi-

ation and propagation in ice.
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修正内聚区长度计算公式在冰 I型
裂纹扩展中的应用
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摘 要：［目的目的］内聚区长度是处于破坏边缘的内聚力单元长度与其连接的其他内聚力单元长度之和，决定了

网格的最大尺寸。精确估算内聚区长度并合理划分网格是影响计算精度的重要因素。［方法方法］为此，基于 J 积

分的部分假设和已有的研究成果，在原有的内聚区长度计算公式中增加关于长厚比的修正函数，然后将修正后

的内聚区长度计算公式应用于冰力学模型，再基于有限元法建立双悬臂梁数值模型进行模拟，并与试验结果进

行对比，以验证修正后内聚区长度计算公式的精确性。［结果结果］ 研究表明，在一个内聚区长度内至少存在 4 个

内聚力单元才能较精确地描述断裂过程。相关结果应用于三点弯曲试验模型模拟的结果显示，断裂点的极限

载荷误差为 2.9% 且在合理范围内。［结论结论］修正后的内聚区长度公式更适用于冰材料。
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