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Abstract: [Objectives] The tracking control of intelligent ships often faces the problem of low controller stability in
complex control environments and manual algorithmic computing. In order to achieve precise tracking control, this
paper proposes a controller based on deep reinforcement learning (DRL). [Methods] Guided by the line-of-sight
(LOS) algorithm and based on the maneuvering characteristics and control requirements of ships, this paper
formulates a path of Markov decision processes by following the control problem, and designs its state space, action
space, and reward by applying a deep deterministic policy gradient (DDPG) algorithm to implement the controller.
An off-line learning method is used to train the controller. After the training, a comparison is made with BP-PID
control to analyze the control effects. [Results] Simulation results show that the deep reinforcement learning (DRL)
controller can rapidly converge from the training process to meet the control requirements, with the advantages of

small yaw error, and a visible reduction in the frequency of changes of the rudder angle. [Conclusions] The study

results can provide a reference for the tracking control of intelligent ships.
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0 Introduction

Currently, as the research on vehicles is develop-
ing in the intelligent and unmanned direction, intel-
ligent ships have attracted much attention from the
global shipbuilding and shipping industries. To
achieve intelligent and autonomous development,
intelligent ships deeply integrate traditional ship de-
sign and manufacturing with modern information
communication and artificial intelligence, including
intelligent navigation, intelligent ship equipment,
and intelligent ship testing!'!. Among them, intelli-
gent navigation has been an important foundation
of ships to perform cargo transportation, communi-
cation and rescue, and other tasks. To make ships
comply with normal navigation orders and perform
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tasks safely and effectively even under many com-
plex water disturbances, it is especially important
for us to use effective control means to carry out ac-
curate trajectory tracking.

The studies on trajectory tracking can be divided
into guidance and control. In terms of guidance, the
line-of-sight (LOS) algorithm is usually used to
transform the path tracking problem into a conve-
nient dynamic error control problem. In terms of
control, based on the complex non-linear systems of
ships, model-free control methods, such as the pro-
portional integral derivative (PID) algorithm, and
the model linearization method are usually used to
improve the computational rate of nonlinear mod-
els. However, in complex environments, traditional
PID controllers not only have complex parameters
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but also do not have adaptive learning capability.
However, the control algorithms such as the opti-
mal control algorithm and the feedback lineariza-
tion algorithm can obtain high control accuracy on-
ly by building precise models. Although the sliding
mode control does not require high model accuracy,
its buffeting problem is difficult to be solved. For
some adaptive parameter regulation methods, such
as the adaptive PID control method that realizes
self-setting of PID parameters by estimating system
outputs, there are deviations between system out-
puts and real outputs due to model uncertainties and
external disturbances®!. Some other adaptive param-
eter regulation methods consume much time in opti-
mizing parameters, which affects the real-time per-
formance of control. Adaptive PID controllers have
a fast response and good real-time performance in
the combination with fuzzy logic ™, but their con-
trol accuracy depends on complex fuzzy rule bases,
which makes the overall calculation complicated.

Considering complex nonlinear system models of
ships as well as a large amount of parameter setting
and complex computation for ensuring the real-time
performance of tracking control, this paper will use
the deep reinforcement learning (DRL) algorithm to
study the trajectory tracking problem of intelligent
ships. DRL is the combination of deep learning and
reinforcement learning. It obtains optimization ob-
jectives through reinforcement learning and envi-
ronment exploration, and deep learning provides
the operation mechanism to characterize and solve
problems. Without relying on dynamic or environ-
mental models, DRL algorithms do not require mas-
sive algorithmic computation and can learn by
themselves. Based on reinforcement learning, Mag-
alhdes et al. 1 designed a supervised switcher using
Q-learning and applied it to unmanned surface vehi-
cles (USVs) and the switcher could intelligently
switch controllers so that the driving state of USVs
could meet different environmental and maneuver-
ing requirements. To improve the stability of com-
plex reinforcement learning, Mnih et al. ) proposed
the deep Q network (DQN) algorithm in 2015 by
combining reinforcement learning with deep natural
networks. The proposition of this algorithm repre-
sents the arrival of the era of DRL. Then this algo-
rithm was applied to navigation collision avoidance
of underdriven unmanned ships [,

Aiming at massive parameter setting, complex al-
gorithm calculation, and other problems, this paper
will design a DRL tracking controller based on the

deep deterministic policy gradient (DDPG) algo-
rithm to achieve accurate tracking control of ships.
Based on the LOS guidance algorithm, this control-
ler controls ship courses to track trajectories. The
path tracking problem of ships is modeled as a Mar-
kov decision process (MDP) according to maneu-
vering characteristics and control requirements of
actual ships. Then we design the corresponding
state space, operation space, and reward function,
and use the off-line learning method to train the
controller. At last, we use simulation tests to verify
the effectiveness of the DRL trajectory controller
and compare the control effect with that of the BP-
PID controller.

1 Overall design of tracking con-
trol system of intelligent ships

1.1 Guidance of LOS algorithm

The tracking control system consists of guidance
and control parts, and the guidance part generally
works by determining the required course angle ac-
cording to the trajectory information and the current
state of ships. The LOS algorithm used in this paper
has been widely used for path control. The LOS al-
gorithm can be combined with controllers under un-
certain model parameters and complex operation en-
vironments, thus tracking and controlling models.
The navigation principle of the LOS algorithm is to
generate the desired course based on a variable radi-
us and minimum circles generated near waypoints,
namely the LOS angle. Then appropriate control is
made so that the current course of ships is the same
as the LOS angle, and thus the trajectory tracking
can be achieved [#].

The schematic diagram of the LOS algorithm is
shown in Fig. 1. It is assumed that the current track-
ing waypoint is P, (X, Vi) and the last waypoint
is Py(x;, ¥;)- The radius R, is selected with P (x,,
y,), the position of the ship, as the center of the cir-
cle so that it can intersect with the path P,P..,. The
point Py (X1 . Vios) Dear Py, is selected as the LOS
point, and the intersection angle y, ., between x, and
the direction vector from the current coordinate of
the ship to the LOS point is the LOS angle that
should be tracked. In the figure, d is the minimum
distance from the current position of the ship to the
tracking path, and y is the current course angle.

The calculation formulas of the radius R, . are

Los

given by Equations (1) and (2). To avoid a zero val-
ue of R

min>

we use two times the ship length L, for
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calculation®!.
a() = (D=3 + 00—’
b(1) = NGkt = X (OF + (0= yie)

c(n) = \/(an — ) Ve =) (1)
R () = \/amz S
RLns = Rmin ([) + 2Lpp (2 )

where the calculated R, is the trajectory error ¢ at

the current moment #, namely d in Fig. 1.
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Fig. 1 Schematic diagram of LOS algorithm

When the ship tracks along the path and arrives
at a position in a certain neighborhood of the next
course point, namely an acceptance circle with
P 5(X440, Visn) as the center of the circle and R, as
the radius, the ship updates the current course point
as the next one. The radius R, is generally set as
two times the ship length.

1.2 Design of control process based on re-
inforcement learning

Reinforcement learning (RL), like deep learning,
belongs to machine learning and is an important
branch of machine learning. It is mainly used to
solve continuous decision problems and is an impor-
tant method for solving MDP problems [1%,

The studied problem can be transformed to an
MDP problem through models. It can be simply in-
dicated as a quadruple < S, 4, P, R >, where § indi-
cates the set of all state values, namely the state
space; A denotes the action space of the set of ac-
tion values; P indicates the state transition probabili-
ty matrix, namely that if the action value 4, = a is
selected under the state S, = s at the moment ¢, the
probability of generating the state s, at the moment
t+lis Py =P[S,., =55, =s,4, =a|]; R=r(s, a)
is the reward function, which is used to evaluate the
action value @ under the state s. The control part in
the tracking control system is indicated by an MDP
model, as shown in Fig. 2.

State .S,

Reward 7,

' rl+| S[*l

Control

Intelligent ship environment
VI

Action value (rudder order) #,
Fig. 2 MDP model of ship control

As shown in Fig. 2, the intelligent ship directly
interacts with the current control environment and
does not need to acquire any information in ad-
vance. During training, the ship uses the action val-
ue a, to interact with the environment, thus updating
the state from s, to s,,, and acquiring the correspond-
ing reward r,,,. Then, the ship continues to take the
next action to interact with the environment. In this
process, massive data are generated, which are used
to optimize the policy z for selecting its actions.
Simply, it is a cyclic iterative process. In reinforce-
ment learning, the training objective is to find an
optimal control policy z* to maximize the accumu-
lative reward R,!'!l. In the below formula, y denotes
the discount factor, which is used to measure the
value proportion of the future reward at the current
stage. It is set that y € [0, 1].

- - 2 _
Rf:71+771+1+7r[+2+""_27/(rr+k+1 (3)
k=1

Policy 7 can be evaluated by two value functions,
the state-value function V*(s,) and the action-value
function Q%(s,, a,). V*(s,) is the expectation function
of the accumulative reward under the state of fol-
lowing the current policy, and E denotes the expect-
ed value. Similarly, O"(s,, a,) is the expectation func-
tion of the accumulative reward under the specific
state and action (s,, a,).

0

Z'}’krmm |S,} (4)

k=1

Z ’}/krt+k+1 |s2‘7 d,:| ( 5 )
k=1

According to the value functions and the defini-

4 (S,) =E, [Rr|sr] =E,

Q” (St: az) = Elr [RI |sraa1] = E}r

tion of the optimal control policy #*, policy z* al-
ways follows the following condition:
" =argmax V' (s,) = argmax Q" (s,,a,) (6)

1.3 Markov modeling of the trajectory
tracking problem

From the above, it can be seen that the compo-
nent design in the Markov modeling process is the
most critical in the reinforcement learning-based
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control design. The correctness of the state space,
action space, and reward has a great impact on the
algorithm performance and the convergence speed.
Thus, we carry out the Markov modeling design for
the trajectory tracking problem of intelligent ships.

1) Design of state space.

According to the LOS algorithm used for guid-
ance, we adjust the current course angle according
to the LOS angle to achieve the tracking effect.
Thus, when selecting the state, we should take the
output parameters in the LOS algorithm into consid-
eration, including the difference e between the ob-
jective course y; o and the actual course y, the tra-
jectory error ¢ and the distance error ¢! with trajecto-
ry points.

The ship model can acquire the surging velocity
u, the swaying velocity v, the yawing velocity » of
the bow, and the rudder angle J. To make reinforce-
ment learning realize high-accuracy tracking and
rapidly suit the transformation of many different en-
vironments, we add the state value at the last mo-
ment as well as the error e(k—1) between the cur-
rent course error and the course error at the last mo-
ment for comparison in addition to the state value at
the current moment. Thus, the current state can bet-
ter indicate whether the ship moves towards the di-
rection with smaller errors. At last, the state space
of the current moment ¢ can be designed as

s, = le, &, &Y, u, vy, 1, 8, e(k—1),,
€ty Bty Epps Uy 1y Vit Tty O] (7)

2) Design of action space.

In light of the characteristics of the trajectory
tracking task and the principle of the LOS guidance
algorithm, this paper focuses on the control of the
navigation direction of ships, namely the rudder an-
gle, but does not consider the control of the ship
speed and the propeller speed. The action space on-
ly includes one action value, the rudder order,
which is denoted by J. It should be set according to
the control requirements of ships, which are set in
the range (-35°, 35°). The maximum rudder speed
is 15.8 (°)/s.

3) Design of reward function.

The reward increases as the expected course an-
gle approximates the LOS angle or as the error be-
tween the actual trajectory and the objective trajec-
tory reduces. Thus, the reward function is designed
as a piecewise function, which is a general form of
it.

r[:{ 0, ?’r:lclso.lrad(g)
—le|-0.1]etk—1)|—0.01]g|, ifle|>0.1rad

where e(k—1) indicates the difference between the
current course error and the course error at the last
moment. When the difference is bigger than 0.1 rad,
the reward is set as negative, which also can be
called the penalty value. By doing this, we hope the
training network can change the current bad state
rapidly. The action under the negative reward is
compared with that under a zero reward at another
segment. Thus, the controller can rapidly select ac-
tions with higher rewards after training and learn-
ing, thus reaching the optimal effect.

1.4 Overall scheme of the control system

The overall framework of the reinforcement
learning-based trajectory control system of intelli-
gent ships is shown in Fig. 3. The LOS algorithm
calculates the required course and the trajectory er-
ror based on the current position of the ship and
then integrates them with the state information of
the ship to form the above state vector s, which is
then input to the trajectory controller. After that, ac-
cording to the reinforcement learning algorithm, we
output the current optimal action value a, to operate
the ship, and calculate the corresponding reward by
the reward function r, to iterate the controller pa-
rameters, so that the trajectory controller can learn
by itself.

Objective

trajectory
point

Reinforcement
learning
controller

Ship
model

State value Action value

Inertia
measurement
unit

Course angle ¥
Current trajectory

point

and speed #, v. ¥

GPS

Fig.3 Block diagram of tracking control of intelligent ships
based on reinforcement learning

Before putting the controller into real-time con-
trol, we first need to train the controller offline. Af-
ter the training with certain times is set, the ob-
tained network parameters that maximize the accu-
mulative reward are stored and integrated so that
the reinforcement learning controller can be ob-
tained. It is then applied to the real-time control sys-
tem for trajectory tracking.

There are many algorithms, mechanisms, and net-
work structures for solving reinforcement learning
problems, but these methods are not expandable
and can only deal with low-dimensional problems.
Thus, Mnih et al. (¢! proposed a training method, the
DQN algorithm, that can use large-scale neural net-
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works in reinforcement learning problems. This al-
gorithm successfully combines deep learning with
reinforcement learning, allowing reinforcement
learning to be extended to deal with some decision
problems in high-dimensional states and action
spaces [12l. The DQN algorithm can solve the prob-
lem of unstable or even divergent learning results
due to the mutual interference between the rein-
forcement learning and the training of the neutral
network approximator for the approximation of the
value function 3], Thus, this algorithm is a pioneer
in the DRL field.

The DQN algorithm significantly improves the
stability and performance of complex reinforcement
learning problems. However, since it uses discrete
action spaces, it should discretize the output actions
and can only select the optimal action from limited
action values. For the trajectory tracking problem of
ships, it is difficult to control intelligent ships accu-
rately if there are too few candidate actions. To
make the algorithm satisfy the maneuvering charac-
teristics and requirements of ships, this paper uses a
DRL algorithm applicable to the continuous action
space, namely the DDPG-based algorithm '], to de-
sign the tracking controller of intelligent ships. This
algorithm can not only operate on the continuous
action space but also process a large amount of data

efficiently and accurately.
2 Controller design based on DDPG
algorithm

2.1 Principle of DDPG algorithm

Lillicrap et al. ['* applied the DQN algorithm to
continuous actions and thus proposed an Actor-Crit-
ic model-free algorithm based on a deterministic
policy gradient. The basic framework of DDPG is

Replay buffer

Input &—— (8, a,r,8") — 8 Input
B {M;in_neTwErk_ N /7 | Targetnetwork | N

-
|[ Actor )4 Critic Actor a' Critic !
|
\

shown in Fig. 4.

network network network network )|

[
L
i IR
Upélate Q(a)
|

Policy gradient S

Fig.4 Block diagram of DDPG

Loss function

L3 (0 (S, 4]

The overall network adopts the Actor-Critic
form, which includes both the neural networks

based on the value function and the neural networks
based on the policy gradient. 8 in the Actor net-
work indicates the deterministic policy function
a =n(s|6°), and 09 in the Critic network denotes the
value function Q(s,al#?). In addition, by referring to
the DQN technology, DDPG eliminates the instabil-
ity brought by large-scale neural networks by using
the experience replay mechanism and a single target
network.

The experience replay means that the current
state, action, and other information are stored at
each moment as the experience e, = (s, a,, ,, §,.;) of
the intelligent body, thus forming a replay memory
buffer D= {e,, ...
we randomly extract a mini-batch amount of experi-

, ey}. When training the network,

ence data from it as training samples. However, the
operation of reusing historical data will increase the
data usage and also disrupt the sequence of the orig-
inal data, which will reduce the correlation between
the data. The target network builds two neutral net-
works with the same structure, the main network
for updating the parameters of the neural network
and the target network for generating the optimal
target values. In the beginning, the parameters of
the main network are given to the target network,
and then the parameters of the main network are
continuously updated while the target network re-
mains unchanged. After a period of time, the param-
eters of the main network are given to the target net-
work again. This cyclic operation can make the opti-
mal target values stable over a period of time, thus
making the algorithm performance more stable.

In the training process, the Actor network in the
main network selects the optimal action value a
through the current policy function a= z(s|6") and
gives it to the intelligent ship according to the sam-
ple state s randomly selected from the experience
pool. The state value s' at the next moment can be
obtained after the intelligent ship interacts with the
environment. Meanwhile, the Critic network ac-
cepts the current state s and the action value a, and
uses the value function Q(s, a|69) to evaluate the ex-
pected accumulative reward of the current state,
which is used to update the parameters of the Actor
network. The overall target network receives the
state s' at the next moment. The action is selected
by the target Actor network and given to the target
Critic network, so that the target expectation Q'(a")
can be obtained. Then, we update the parameters of
the Critic network of the main network by calculat-
ing the loss function. For the parameter updating of
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the Actor network in the main network, Silver
et al. S1found that the gradient of the objective
function J(6") of the deterministic policy using the
policy = is equivalent to the expected gradient of
the Q function using the policy x:

0J () £ [ BQ(s,aHQ)]
’ 06"

o 9)

According to the deterministic policy a=z(s|0%),
the gradient of the Actor network can be obtained as

dJ@) _E‘IBQ(s,aIHQ) Bﬂ(SIH”)J (10)

oo da o6
1
Vord = 55 3 Ve Q .0l gy - Vi (516 )

(11)
On the other hand, the value gradient of the Crit-

ic network is

AL(6Y) ~ 0, 00(s.al0°)
86)‘-) - Es.(t,r,.c’~l) ’r(TargetQ Q(S, a|6 )) 89Q
(12)

TargetQ = v+ yQ' (s, 7(s'6")|6*) (13)
where 67 and #?' indicate the parameters of the tar-
get policy network and the target value function net-
work. The updating method of the target network is
different from that in the DQN algorithm. In the
DDPG algorithm, the parameters of the Actor-Critic
network's target networks are updated gradually,
which is also called soft updating. In this way, the
stability in the learning process can be further im-
proved:

g¥ =78%+(1-1)6
& =1+ (1 —1)F"

where 7 is the learning rate.

(14)
(15)

We define the minimum loss function to update
the parameters of the Critic network, where y, is the
error between the evaluation value function of the
state and action at the current moment and the tar-

get expectation obtained by the target network:

1 INND
L= NZ(w—Q(s,,a,ww (16)

2.2 Steps of algorithm

The parameters of the Actor-Critic network are
initialized, and the parameters of the current net-
works are given to the corresponding target net-
works. We initialize the experience pool by setting
the capacity of the replay buffer as 30 000, the soft
updating learning rate as 0.01, and the accumulative
discount factor as 0.9. The steps of the training are
as follows.

1) Initialize the ship environment;

2) Repeat the following steps until the set maxi-

mum step is reached;

3) In the main network, the Actor network ob-
tains the state s, of the ship at the current moment,
selects the action rudder order J, according to the
current policy and gives it to the ship for operating,
namely 6, = m(s,|6");

4) After carrying out the current rudder order, the
ship outputs the reward 7, and the next state s,,,. The
Actor network acquires this state information and
selects the next rudder order 6, ,;

5) The data (s,,6,,7,,5,.1) generated in this process
is stored in the replay buffer as the data set for train-
ing networks. When the experience pool is full, the
data is cyclically stored from the first location;

6) N samples (s,.6,.r,,8,,) are randomly selected
from the replay buffer as the training data of the cur-
rent Actor network and the Critic network;

7) The Critic network is updated through the loss
function, and the current Actor network is updated
through the policy gradient update of the Actor net-
work. Then we conduct soft updating for the target
networks.

3 Simulation and comparison of al-
gorithms

3.1 Establishment of the simulation envi-
ronment

To verify the above method, we simulate the ship
tracking in the Python environment. The single-pro-
peller single-rudder KVLCC2 tanker with a length
of 7 m introduced in References [16-17] is used as
the model of the research object. The model with
three degrees of freedom (surging, swaying, and
yawing) is used for modeling, and the modeling de-
tails can refer to Reference [16]. The major parame-
ters of the ship are listed in Table 1.

Table 1 Parameters of a KVLCC2 tanker
Parameter Value Parameter Value
Ship length L,/m 7 Block coefficient Cy, 0.809 8
Ship width B,,/m 1.168 & Coordinate of buoyant 0.244 0
center/m
Moulded depth D/m  0.656 3 Diametez)o/%)ropeller 0216 0
Volume of 12724 v
displacement/m’ s Area of rudder /m? 0.0539

For the DDPG controller in this paper, the param-
eters of the Critic network and the Actor network
are respectively set as Tables 2 and 3.

3.2 Off-line learning of controller

The DDPG-based off-line learning is set as fol-
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Table 2 Parameters of Critic network

Parameter Value

Input layer State vector S(7)
First hidden layer 300
Activation function at the first layer Relu
Second hidden layer 200
Activation function at the second layer Relu

Output layer Action 8(f)

Activation function at the output layer Tanh
Initialization of parameters Initialization of Xavier

Learning rate 0.000 1

Optimizer Adam

Table 3 Parameters of Actor network

Parameter Value

Input layer State vector S(7), action 6 {f)

First hidden layer 300
Activation function at the first layer Relu
Second hidden layer 200
Activation function at the second layer Relu

Output layer Q(S().0()

Activation function at the output layer Linear
Initialization of parameters Initialization of Xavier
Learning rate 0.001

Optimizer Adam

lows: initialize the network parameters and the ex-
perience buffer pool; design the maximum number
of training rounds of 2 000, the maximum step of
each round of 500, and the sampling time of 1 s.
When we plan the trajectories to be tracked during
the training, we design multiple three-waypoint
routes based on the corner transformation by refer-
ring to the design principle stated in Reference [18],
and we randomly select one route for trajectory
tracking in each training round. The purpose is to
adapt the controller to multiple environments and
meet the requirements of the LOS guidance algo-
rithm on the course control.

During training, the data is stored in the experi-
ence pool, and then a set of data is randomly select-
ed for training. The states and action values are nor-
malized. When the maximum step is reached or the
final waypoint is output, the round is stopped and
the total reward of this round is calculated. The
course errors of 200 rounds, 300 rounds, and 500
rounds are shown in Fig. 5. It can be seen from the

figure that as the training rounds increase, the

course error decreases significantly and the control
algorithm keeps converging. The training stops
when it reaches the maximum rounds, and the total
reward is continuously increasing. To make the im-
age display more clearly, we cut out the total re-
wards of 200 to 500 rounds, which are depicted in
Fig. 6. It can be seen that the algorithm basically
converges at about 270 rounds, which indicates the
fast learning process.

- == After training for 200 rounds
—— After training for 300 rounds
=== After training for 500 rounds

100 -

40|

I
1
1
1
]
1
]
1
1
1
60+ |
1
1
1
I
1
I
1
1
1
1

20

Course error / (°)

720 -

0 25 50 75 100 125 150 175 200
Time / s

Fig.5 Curves of course error

Reward R

-120 |
~140 |

200 250 300 350 400 450 500
Rounds

Fig. 6 Curve of total reward

3.3 Design and comparison of simulation
tests

When the above training is completed, the DDPG
controller saves the network parameters with the
largest reward function and applies them to the tra-
jectory tracking simulation. To verify the feasibility
of the DDPG controller, we select the BP-PID con-
troller for comparative analysis.

In terms of the BP-PID controller for compari-
son, we use the BP neural network with four nodes
at the input layer, five nodes at the hidden layer,
and three nodes at the output layer to select three
parameters of the PID. The learning rate is 0.546
and the factor of momentum is 0.79. By referring to
Reference [19], we use additional inertia terms to
optimize the neural network. The DDPG controller
and the BP-PID controller are simulated and com-



50 CHINESE JOURNAL OF SHIP RESEARCH, VOL.16, NO.1, FEB. 2021

pared in the same environment. In the simulation,
the ship starts from the origin (0, 0) with an initial
course of 45°, an initial speed, namely the surging
speed u of 1.179 m/s, and an initial propeller speed
rof 10.4 r/s.

Experiment 1: We design the straight trajectory
and the zigzag trajectory to observe the tracking ef-
fect of the two controllers for straight routes and
routes with sharp changes (see Fig. 7). The coordi-
nates of the trajectory points are respectively (0,
50), (400, 50) and (0, 0), (100, 250), (200, 0), (300,
250), (400, 0), (500, 250), (600, 0) with the unit of m.

50+
40 +
£ 30+
=
20 -
Lo —— Objective trajectory
i —— DDPG
=== BP-PID
() C 1 1 L 1 1 L 1 1 1
0 50 100 150 200 250 300 350 400
x/m
(a) Tracking in a sgraight trajectory
250 +
200 +
150 +
g
N
100
50l —— Objectiye
i
i i
0r - -/ ===BP-PID
0 100 200 300 400 500 600
x/m

(b) Tracking in a zigzag trajectory

Fig. 7 Trajectory tracking result (Experiment 1)

The comparison of the two types of trajectory
tracking shows that the DDPG controller can stably
track the straight trajectory more rapidly, and is sig-
nificantly better than the BP-PID controller in track-
ing the zigzag trajectory. The root-mean-square er-
ror (RMSE) of the course angle is calculated (see
Fig. 7(b)), which is 61.017 8 in the BP-PID control-
ler and it is only 10.018 in the DDPG controller.
This indicates that the latter has a much better con-
trol performance.

Experiment 2: To simulate the trajectory of tradi-
tional ships, we design the trajectory with way-
points of (0, 0), (100, 50), (150, 250), (400, 250),
(450, 50), (550, 0) for tracking. The tracking curves
and the RMSEs of the course of the two controllers

are compared, as shown in Fig. 8 and Table 4, re-

spectively.
250 + X
:
200
£ 150 +
=
100
50k —— Objective trajectory
—DDPG
---BP-PID
Of ¢ . . . . .
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Fig. 8 Trajectory tracking result (Experiment 2)

Table 4 Control performance

Controller RMSE
BP-PID controller 13.5850
DDPG controller 6.911 96

In this simulation, the tracking effects of the two
controllers for the LOS angle and the changing fre-
quency of the rudder angle are further compared, as
shown in Figs. 9 and 10, respectively. The total
cruise time of the PID controller is about 1 000 s af-
ter the parameter setting of the BP neural network,
while the cruise time of the DDPG controller is re-
duced by 4%. In the course tracking at corners, the
DDPG controller can achieve the desired value
within 20 s, and the adjustment time of the BP-PID
controller is about 60 s. In addition, the control ef-
fect of the BP-PID controller is not stable and the
rudder angle has a high vibration frequency. It can
be seen that the DRL controller can quickly make
adjustments according to the trajectory changes. By
reducing unnecessary control links, it has less ad-
justment time. Moreover, with a stable control ef-

fect and small change frequency of the rudder an-
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Fig. 9 Control result of BP-PID
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gle, the DDPG controller has better control perfor-
mance.

4 Conclusion

Aiming at the trajectory tracking problem of
ships, this paper proposed a tracking controller
based on DRL. First, on the basis of the LOS guid-
ance algorithm, we built a Markov model for track-
ing control and provided the program of the algo-
rithm based on the DDPG controller. Then we de-
veloped simulation tests for the tracking control sys-
tem in the Python environment and compared it
with the BP-PID controller.

The trajectory tracking problem was first mod-
eled into an MDP problem, and then the controller
was trained offline. The analysis of this process re-
veals that the DDPG controller can converge quick-
ly to the control requirements in training. This veri-
fies the feasibility of the designed states, the action
space, and the reward function. Moreover, the com-
parison results of the trajectory tracking simulation
tests show that the DDPG controller can respond to
the trajectory changes quickly. With a stable control
effect and smaller changes in the rudder angle, it
can well adapt to different trajectories. Generally,
the control method based on DRL can be applied to
the tracking control of ships. With adaptive and sta-
ble control capability, this method not only avoids
complicated control calculation but also ensures re-
al-time performance. This study has a certain refer-
ence value for the intelligent control of ships.
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