
To cite this article：DING Z G, ZHANG X Y, WANG C B, et al. Intelligent collision avoidance decision-making method for

unmanned ships based on driving practice [J/OL]. Chinese Journal of Ship Research, 2020, 16(1). http://

www.ship-research.com/EN/Y2020/V16/I1/96.

DOI：10.19693/j.issn.1673-3185. 01781

Received：2019 - 09 - 24 Accepted：2020 - 12 - 08

Supported by：National Key R&D Program of China (2018YFB1601502)

Authors：DING Zhiguo, male, born in 1996, master degree candidate. Research interests: intelligent collision avoidance of un-

manned ships, and traffic flow simulation. E-mail: dingzhiguo@dlmu.edu.cn

ZHANG Xinyu, male, born in 1978, Ph.D., professor, doctoral supervisor. Research interests: traffic information engi-

neering, organizational optimal scheduling, traffic management systems, and unmanned ship technology. E-mail:

zhang.xinyu@sohu.com

**Corresponding author：ZHANG Xinyu

0 Introduction

With the rise of a new generation of artificial in-

telligence and unmanned driving technology in the

field of navigation, marine transportation is devel-

oping rapidly to be intelligent. As carriers of marine

intelligent transportation, unmanned ships have be-

come the focus of shipping industries all over the

world. In recent years, good results have been

achieved in intelligent collision avoidance decision-

making of unmanned vehicles. Thus, actively learn-

ing from the technology of unmanned vehicles,

many experts and scholars try to solve intelligent

collision avoidance decision-making of ships in the

navigation context.

Autonomous navigation of unmanned ships in-

cludes four stages: perception, understanding, deci-

sion-making, and control. Specifically, decision-
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making is the key to safe navigation and obstacle

avoidance of unmanned ships. Therefore, intelligent

collision avoidance decision-making of unmanned

ships has become the research focus of scholars. Its

core lies in whether safe and effective decisions

conforming to International Regulations for Pre-

venting Collisions at Sea (COLREGS) and common

practice of seamen can be quickly made in a com-

plex and changeable marine environment. In fact,

the practical problems to be solved in ships' intelli-

gent collision avoidance decision-making are the

same as those to be solved by ship operators in actu-

al collision avoidance. The difference is whether to

solve problems by operators or by computers. At

present, intelligent collision avoidance decision-

making of unmanned ships based on driving prac-

tice has rarely been studied. This paper intends to

carry out research in this regard.

Based on driving practice, intelligent collision

avoidance decision-making of unmanned ships in-

cludes perception and understanding of navigation

situations, as well as decision-making about colli-

sion risk indexes, action timing and effectiveness of

collision avoidance, and navigation resumption.

Perception of navigation situations refers to the

active multi-modal perception of ship internal and

external information, as well as navigation environ-

mental information, by means of various shipborne

sensors.

Understanding of navigation situations means

structurally describing navigation situations of un-

manned ships through classification and comprehen-

sion of perceived multi-source heterogeneous and

multi-modal information. In addition, it refers to the

quantitative classification of ship encounter scenari-

os according to COLREGS and common practice of

seamen. At present, different criteria are available

for the classification of encounter scenarios.

Chen [1] analyzed and summarized target encounter

characteristics (TEC), according to geometry laws

of relative motion. On this basis, he concluded 15

TEC through relative courses of target ships, ship

velocity ratios, and ranges of course difference be-

tween target ships and own ships, and proposed col-

lision-avoidance schemes corresponding to differ-

ent TEC. Perera et al. [2] divided the collision area

of an own ship into eight zones and the relative

course of a target ship into eight zones. Moreover,

according to relative distances and velocity ratios of

ships, they classified encounter scenarios into 144

kinds, of which 63 were effective. A higher quantifi-

cation degree of encounter scenarios is more benefi-

cial to collision avoidance decision-making. How-

ever, with the increase in influencing factors intro-

duced, the system becomes more complex, requir-

ing more traversal time. With reference to scenario

modeling of unmanned vehicles, based on ontology,

this paper built an ontological conceptual model of

navigation situations. In addition, the paper realized

online reasoning through knowledge representation

of encounter scenarios according to COLREGS and

driving practice. In this paper, encounter scenarios,

as well as avoidance responsibilities and actions of

the own ship, were given to provide a basis for intel-

ligent collision avoidance decision-making to im-

prove decision-making efficiency.

Collision risk indexes are the basis for taking ac-

tions of collision avoidance. Kearon et al. [3] pro-

posed the method for determining collision risk in-

dexes by weighting the distance to the closest point

of approach DCPA and the time to the closest point

of approach TCPA for the first time. Only consider-

ing the effects of two factors on collision risk index-

es, this method may misjudge actual situations. In

References [4-6], methods based on neural net-

works were used for determining collision risk in-

dexes of ships. With DCPA, TCPA, relative bearing,

course, and velocity as system inputs, these meth-

ods can yield good prediction effects. In References

[7-9], collision risk indexes were studied through

fuzzy theory. Based on the comprehensive consider-

ation of DCPA, TCPA, azimuths of approaching

ships, distance and velocity ratios, Liu et al. [7] built

a fuzzy evaluation model of collision risk indexes.

Moreover, they improved the membership function

of DCPA through the quaternion ship domain

(QSD), which can provide an accurate basis for col-

lision avoidance decision-making. On the basis of

considering the above five influencing factors in

combination with ship maneuverability, visibility,

and navigation water conditions, Xu et al. [8] modi-

fied fuzzy membership functions to improve the ac-

curacy of collision risk indexes. On the basis of pre-

vious studies, this paper improved membership

functions of collision risk indexes and redesigned a

composite model of collision risk indexes according

to navigational driving practice.

After the perception and understanding of naviga-

tion situations and the determination of collision

risk indexes, unmanned ships need to make reason-

able decisions on collision avoidance according to

driving practice. Some scholars applied the poten-
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tial field theory in collision-avoidance path plan-

ning of robots to collision avoidance of ships [10-12].

Although obstacles can be avoided theoretically in

this way, requirements of navigation practice fail to

be well met, as avoidance ranges and action modes

are affected by gravitational and repulsive fields.

Some scholars believed that timing for ship colli-

sion avoidance was directly related to the collision

risk index CRI and thus used CRI as the evaluation

index to make collision avoidance strategies [13-14].

However, CRI is affected by multiple factors includ-

ing navigation environment, visibility, distance be-

tween two ships, azimuths of two ships, DCPA,

TCPA, and ship velocity ratios. Moreover, the fac-

tors are mutually restricted. Therefore, the analysis

of different influencing factors by different re-

searchers will result in different CRI. Without com-

plete consideration of all effects, the direct use of

CRI as the decisive index of ship collision avoid-

ance may cause great errors. Some scholars studied

ship collision avoidance decision-making with a

deep reinforcement learning (DRL) algorithm [15-16].

By constructing DRL models suitable for un-

manned ships, they obtained basic collision-avoid-

ance models through reinforcement training. How-

ever, this method requires a large amount of train-

ing data, and model structures are highly dependent

on the data. As the algorithm takes a long time of

training, real-time collision avoidance in unknown

environment fails. Li et al. [17] put forward a method

of personifying intelligent decision-making for ves-

sel collision avoidance (PIDVCA). By imitating ex-

perienced operators (collision avoidance experts) in

collision avoidance decision-making, based on dy-

namic collision-avoidance rule bases constructed

through machine learning, vessels can make reason-

able decisions conforming to COLREGS and com-

mon practice of seamen, with good collision avoid-

ance effects being achieved. However, this method

fails to fully consider all the encounter scenarios of

a ship during its navigation. Moreover, with the in-

crease in encounter scenarios, the rule base gradual-

ly expands, requiring a longer time to traverse.

It is important to reasonably determine avoidance

timing, modes and ranges during ship collision

avoidance. Rule 16 of COLREGS stipulates: "Ev-

ery vessel which is directed to keep out of the way

of another vessel shall, as far as possible, take early

and substantial action to keep well clear. " Experts

and scholars have built collision avoidance deci-

sion-making models of ships by using geometric

principles, velocity obstacles, potential field theory,

fuzzy mathematics, neural networks, intelligent op-

timization, artificial intelligence, and expert sys-

tems. These methods are of certain theoretical guid-

ing significance for the development of collision

avoidance decision-making, but none of them can

well match the reality of navigation.

At present, there are few studies on intelligent

collision avoidance decision-making of unmanned

ships from the perspective of driving practice. In

view of this, this paper discussed ship collision

avoidance decision-making in terms of driving prac-

tice. Firstly, the reasonableness, timeliness, and

uniqueness of intelligent collision avoidance deci-

sion-making of unmanned ships were discussed.

Then, three models required in intelligent collision

avoidance decision-making were built: an ontologi-

cal conceptual model of navigation situations, a

multivariate composite assessment model of colli-

sion risk indexes, and an intelligent collision avoid-

ance decision-making model based on the operator's

perspective (BOP). Finally, simulation tests were

designed to verify the effectiveness of the method

in typical encounter scenarios.

1 Problem analysis

From the perspective of the driving practice of

manned ships, the main problems that should be

considered in the case of collision avoidance deci-

sion-making by unmanned ships are as follows.

1) Timeliness of decision-making.

A ship sailing at sea is restricted by winds,

waves, currents, visibility, and water depth. Thus, it

is necessary to comprehensively consider such fac-

tors in collision avoidance decision-making. A col-

lision avoidance decision-making algorithm is re-

quired to respond quickly in a complex and change-

able environment. The failure of the algorithm to

guarantee its timeliness or make decisions within an

acceptable time range will seriously threaten the

navigation safety of the ship.

2) Reasonableness of decision-making.

A ship is required to be personified maximally in

its autonomous collision avoidance decision-mak-

ing. In the navigation of a manned ship, the opera-

tor will actively make comprehensive and experi-

enced decisions with human-ship-environment inte-

grated consideration based on the surrounding envi-

ronment, navigation rules, and ship maneuverabili-

ty. Similarly, an unmanned ship in autonomous deci-

sion-making also needs to comprehensively process

DING Z G, et al. Intelligent collision avoidance decision-making method for unmanned ships based on
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and analyze multi-source heterogeneous informa-

tion from its perception system to obtain an optimal

collision-avoidance strategy, thus realizing personi-

fying and optimal decision-making.

3) Uniqueness of decision-making.

In collision avoidance decision-making, an opera-

tor controls ship collision avoidance by judging col-

lision risk indexes and then giving accurate deci-

sion information (rudder angles or velocity) accord-

ing to the driving experience. This requires that an

unmanned ship should not produce multiple solu-

tions in implementing its decision-making algo-

rithm, but output a unique, definite, and executable

instruction.

In this paper, the above problems were fully con-

sidered during the research on intelligent collision

avoidance decision-making of ships. On this basis,

an ontological conceptual model of navigation situa-

tions of unmanned ships was built. In addition, in

line with COLREGS and common practice of sea-

men, encounter scenarios of ships were quantified

to establish a composite assessment model of colli-

sion risk indexes. Then, a BOP intelligent collision

avoidance decision-making model was built from

the perspective of driving practice. This model

solves the optimal collision-avoidance strategy by

taking the shortest total path of ship collision avoid-

ance as the objective function. Thus, intelligent nav-

igation and autonomous collision avoidance of

ships can be realized.

2 Model establishment

An unmanned ship in autonomous navigation

needs to interact with the environment in real time

to obtain navigation states and then make behavior

decisions through a learning algorithm. Fig. 1 shows

the system architecture. Information on the current

state of the ship and surrounding obstacles is input

and passed to the behavior decision-making layer.

After a series of calculations, decision-making in-

formation of the ship is output and passed to the

control execution layer to control ship motion. In

the figure, λ and ϕ are longitude and latitude of the

ship, respectively; ψ is the course of the ship; u is

the forward velocity of the ship; v is transverse

movement velocity of the ship; r is the yawing an-

gular velocity of the ship; Δψ is a course variation

output by the decision-making; ΔV is a velocity

variation output by the decision-making; δ is a rud-

der angle of the ship; V is navigation velocity of the

ship.

Fig. 1 Architecture diagram of the autonomous navigation system of an unmanned ship

Position information

Attitude information
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2.1 Ontological conceptual model of nav-
igation situations of unmanned ships

An accurate understanding of navigation situa-

tions of unmanned ships is a basis of behavior deci-

sion-making. The understanding of collision-avoid-

ance scenarios is mainly to classify typical encoun-

ter scenarios based on the understanding of both

COLREGS and common practice of seamen, pro-

viding a prerequisite for collision avoidance deci-

sion-making.

In COLREGS, three encounter scenarios are giv-

en: head-on, crossing, and overtaking situations, as

shown in Fig. 2. However, during actual ship navi-

gation, for different encounter situations, ships have

different rights of way. Therefore, it is necessary to

divide encounter scenarios in detail.

Head-on Crossing Overtaking

Fig. 2 Schematic diagram of three typical encounter scenarios

At present, understanding and modeling of navi-

gation situations of unmanned ships are rarely stud-

ied, and no unified standard definition is available.

A knowledge base of collision avoidance on the ba-

sis of simple "IF···THEN··· " inference rules can
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hardly describe various encounter forms and colli-

sion-avoidance schemes. Based on the scenario

modeling of unmanned vehicles [18], with the power-

ful information presentation capacity of the ontolog-

ical conceptual model, this paper can logically ex-

press and quantify navigation situations. Moreover,

it describes priori navigation knowledge according

to driving practice to improve the efficiency of colli-

sion avoidance decision-making.

Understanding of navigation situations is to struc-

turally describe navigation situations of unmanned

ships by classifying and comprehending multi-

source heterogeneous information from perception

systems. First, navigation situations of unmanned

ships are divided into entities and attributes accord-

ing to the "ontology" theory. The entity class repre-

sents objective substances of different nature, and

the attribute class describes object entities and rela-

tionship attributes between entities. In this paper,

the attribute class is divided into entity and relation-

ship attributes. Specifically, entity attributes include

positions, courses, and velocity of entities, while re-

lationship attributes include position, course, azi-

muth, and velocity relationships.

Information from a perception system contains

static and dynamic information. Static information

generally refers to static obstacle entities, including

structured chart entities and other static obstacles.

Specifically, chart entities include waterways and

navigation aids of structured characteristics. Static

obstacle entities refer to static unstructured entities,

including anchored ships and reefs. Dynamic infor-

mation generally refers to dynamic obstacles and

environmental entities in the navigation environ-

ment.

An ontological conceptual model of navigation

situations of unmanned ships was built through enti-

ty and attribute description of multi-source hetero-

geneous information from the perception system.

On this basis, encounter scenarios were quantitative-

ly classified according to COLREGS and good sea-

manship requirements and expressed with Prolog

language.

According to COLREGS and driving practice,

this paper divided an encounter area into six zones

in terms of the azimuth relationship of a target ship:

zones at the bow, at the stern, forward of the beam

on the port side, abaft the beam on the port side, for-

ward of the beam on the starboard side, and abaft

the beam on the starboard side. In each encounter

zone, encounter scenarios (ES) were divided into 12

kinds in terms of course and velocity relationships

between the target ship and the own ship. Then, an

understanding and division list of navigation situa-

tions was built based on the ontological conceptual

model of ship navigation situations and the Prolog

language, as shown in Table 1. In the table, HO re-

fers to a head-on scenario; DHO refers to a danger-

ous head-on scenario; CR refers to a crossing sce-

nario; OT refers to an overtaking scenario; q is the

relative bearing of the target ship; ψt is the course

of the target ship; ψ0 is the course of the own ship;

Vt is the velocity of the target ship; V0 is the veloci-

ty of the own ship.

In view of the complex and changeable marine

environment, according to driving practice, this pa-

per put forward a scenario division method based

on the ontological conceptual model of navigation

Table 1 Navigation situation understanding and division

No.
Azimuth of the

target ship

Bow

Forward of the beam
on the starboard side

Abaft the beam on
the starboard side

Stern

Abaft the beam on
the port side

Forward of the beam
on the port side

Encounter
scenario

Relative bearing/q

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary Turn right

Turn right

Keep course
and speed

Keep course
and speed

Turn right

Turn left

Turn right

Keep course
and speed

Turn left

Turn right

Turn rightTurn right

Turn right

Turn left or right

Avoidance
action

Responsibility for
collision avoidance

None

Equal

Give way

Give way

Give way

Give way

Give way

Give way

Give way

Stand on

Stand on

Stand on
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situations. With dimension reduction of navigation

environment, the paper realized the understanding

and division of navigation situations of unmanned

ships. This provides a basis for intelligent collision

avoidance decision-making and improves decision-

making efficiency to a certain extent.

2.2 Multivariate composite assessment

model of collision avoidance indexes

COLREGS gives no definition of collision risk,

but many of its items are based on the premise of

collision risk. Thus, it is necessary to build a quanti-

fication model of collision risk.

In navigation practice, while judging the exis-

tence of collision risk, an operator can intuitively

perceive the urgency of risk, and then make qualita-

tive and quantitative analyses. Usually, DCPA, inter-

ship distance and its variation, and TCPA are used

to judge the existence and degree of collision risk.

Collision risk indexes of ships are affected by many

factors, and such factors are mutually restricted.

Therefore, based on previous studies, using fuzzy

theory, this paper built membership functions of

five influencing factors: DCPA, TCPA, inter-ship

distance, relative azimuths, and ship velocity ratios.

Moreover, the paper constructed a multivariate com-

posite assessment model of collision risk indexes

according to driving practice.

From Reference [8], a smaller inter-ship distance

results in a higher risk of ship collision. From the

difficulty of collision avoidance, a smaller distance

yields a worse effect of collision avoidance. The

membership function ud of inter-ship distance at

any time is as follows.

（1）

where d1 is the last collision-avoidance distance,

usually 12 times the ship length; d2 is the coordinat-

ed collision-avoidance distance of a ship [19].

（2）

Target ships in different azimuths affect collision

risk indexes differently. Generally, a target ship on

the starboard side has greater effects than that on

the port side does, while the effects of a target ship

forward of the beam are greater than those abaft the

beam. The membership function uq of relative bear-

ing at any time is as follows.

（3）

where q0 is related to the ship's velocity ratio

，

A greater ship velocity ratio results in a higher

collision risk index. The membership function uK of

the ship velocity ratio at any time is as follows.

（4）

DCPA greatly affects collision risk indexes, and a

smaller DCPA can result in a higher degree of colli-

sion risk. The membership function uDCPA of DCPA

at any time is as follows.

（5）

where d2 is the minimum safe distance of approach.

In order for simplified calculation, d2 = 2 n mile. In

view of the effects of ship size, collision is possible

even in the case of a small DCPA. Therefore, the av-

erage length of the two ships is taken, generally

about 0.1 n mile.

TCPA is an evaluation index for the degree of col-

lision risk. A smaller TCPA means a higher degree

of collision risk. The membership function uTCPA of

TCPA at any time is as follows.

（6）

where t1 is the time from the last steering point to

the closest point of approach, ，

and vr is the velocity of a target ship relative to the

own ship; t2 is the start time of collision risk. In the

practice of navigation, an operator has different per-

ception degrees of risk from target ships at the same

distance but with different azimuths and relative ve-

locities. Therefore, it is difficult to use distance to

determine the start of a collision. With reference to

Reference [20], this paper took t2 = 15 min as the

start time of collision risk.

For combination rules of collision risk indexes,

scholars have proposed different methods. Accord-

ing to Reference [8], this paper allocated fuzzy

weight of target influencing factors as follows.

（7）

For the original model, CRI is calculated as fol-

lows.
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According to driving practice, in the case of

DCPA greater than the safe distance of approach, de-

spite a small TCPA, there is no ship collision risk.

Therefore, the improved CRI is as follows.

2.3 BOP intelligent collision avoidance
decision-making model

On the basis of the previous models, intelligent

collision avoidance decision-making of ships is

mainly to solve the optimal timing and range of

ship collision avoidance. As the timing and range of

avoidance actions are restricted by COLREGS and

affected by driving experience, operators take differ-

ent actions in different encounter situations. Colli-

sion-avoidance measures taken at different timing

will yield different effects, as shown in Fig. 3.

Target ship

Own ship

Fig. 3 Schematic diagram of ship steering and collision

avoidance action mode

In Fig. 3, point O is the current position of the

own ship; point A is the current position of the tar-

get ship; R1, R2, and R3 are different timing for ship

collision avoidance; P1, P2, and P3 are different clos-

est points of approach; Δψi (i = 1, 2, 3) is the range

of a collision-avoidance action corresponding to dif-

ferent decision-making timing, i. e., a course varia-

tion; A1, A2 and A3 are positions of the target ship

with course variations of Δψ1, Δψ2, and Δψ3, respec-

tively; TC is the true course of the unmanned ship;

AiO is the relative course of the two ships.

From the perspective of an operator's thinking

and decision-making, by analyzing the geometric re-

lationship of relative motion between the own ship

and a target ship, this paper built a BOP intelligent

collision avoidance decision-making model on the

basis of ensuring ships can be passed and clear at a

safe distance of approach. With the shortest total

path of collision avoidance as the objective func-

tion, and ship maneuverability and COLREGS as

constraints, the model solves an optimal collision-

avoidance strategy by quantifying intervals of colli-

sion-avoidance steering. Fig. 4 shows the flow chart

of the BOP intelligent collision avoidance decision-

making model.

Start

Model initialization

Ontological conceptual model
of navigation situations

Composite model of collision
risk indexes

No

Yes

Is there a risk
of collision?

Give way

Stand onResponsibility for
collision avoidance

Determination of key give-way ships

Yes

No

Is it a
close-quarters

situation?

Quantification of collision-
avoidance steering interval

Iterative calculation
of the shortest path

Optimal time and range
of collision avoidance

Prediction of the timing
of navigation resumption

Yes

No

Is there
any risk of collision
before navigation

resumption?

Course PD control system

End

C
lo

se
-q

ua
rt

er
s

si
tu

at
io

n
m

od
el

Fig. 4 Flow chart of BOP intelligent collision avoidance

decision-making model

In the case of ship collision risk, it is necessary to

geometrically calculate the range of collision avoid-

ance according to the safe distance of approach.

Taking collision-avoidance measures at different po-

sitions will lead to different lengths of ship colli-

sion-avoidance paths. In order to obtain an optimal

collision-avoidance path in different steering rang-

（8）

DING Z G, et al. Intelligent collision avoidance decision-making method for unmanned ships based on
driving practice 37

downloaded from www.ship-research.com



CHINESE JOURNAL OF SHIP RESEARCH，VOL.16，NO.1，FEB. 2021

es, we can construct an objective function as fol-

lows.

（9）

where xk and yk refer to the current position of a

ship; xk+1 and yk+1 refer to the next position of the

ship.

It is difficult to analytically express the corre-

sponding relationship between decision-making tim-

ing and paths of collision avoidance. Therefore, a

quantification model of collision-avoidance dis-

tance is used to solve the steering range and colli-

sion-avoidance path at each collision-avoidance dis-

tance. According to driving practice, for an ap-

proaching ship forward of the beam, collision-

avoidance actions are generally taken when the two

ships are 4-6 n mile apart, while for an approaching

ship abaft the beam, collision-avoidance actions are

taken when the two ships are 3-4 n mile apart. In

this paper, intervals of collision-avoidance steering

were quantified. Avoidance decision-making timing

(R1, R2, ..., Rn) was built according to a step of

0.1 n mile, and the one-dimensional vector of avoid-

ance action ranges was (∆ψ1, ∆ψ2, ..., ∆ψn).

During the calculation of collision-avoidance

paths, in view of COLREGS requirements and ship

maneuverability restrictions, the following con-

straints should be met:

（10）

where d0 is the initial distance between an un-

manned ship and a dynamic target ship. According

to both the steering diagram of radar-based collision

avoidance and the requirements of "acting early, al-

tering courses or velocity greatly, leaving broad sea

room, and keeping well clear" in COLREGS, the

range of ship collision-avoidance action was set to

[15° , 90° ]. For a general ship, steering torque can

reach a maximum in the case of a rudder angle be-

tween 32° and 35° . Therefore, this paper took |δ| =

35° as the limit rudder angle of the ship. For an ap-

proaching ship forward of the beam, the last timing

of steering is when the ship is at a distance of

4 n mile. In order to ensure a solution to the model,

we set the initial distance between the own ship and

the target ship to be greater than 4 n mile.

In driving practice, an operator is required to ful-

ly understand ship performance and consider ship

steering time and turning characteristics in decision-

making. In view of this, this paper adopted the

three-degree-of-freedom integrated model proposed

by Abkowitz [10]:

（11）

（12）

where X and Y are components of external force on

the x-axis and y-axis, respectively; m is mass of a

ship; Izz is mass moment of inertia of the ship

around the vertical axis passing through the center

of gravity (rotational inertia); N is the moment of ro-

tation of external force acting on the ship around

the vertical axis passing through the center of

gravity.

As estimation of hydrodynamic derivatives is not

the focus of this paper, it is not described in detail

here. The mathematical model of ship maneuvering

in this paper was based on a typical standard Mari-

ner ship of ITTC. Table 2 lists relevant ship data.

The ship motion model can be obtained by using

the table of dimensionless hydrodynamic data in

Reference [21].

Table 2 Coefficients in the mathematical model of ship

maneuvering motion of Mariner

ValueDescription

Total length

Length between perpendiculars

Molded breadth

Designed draugth

Displacement

Designed velocity

Rudder-angle limit

Reasonable steering, fast and smooth course vari-

ation, and short adjustment time should be taken in-

to account in designing a ship steering controller to

match with navigation reality. Therefore, a PD steer-

ing controller model was adopted in this paper. The

control rate of δ is Cδ =-Kp(Ψ-Ψdesired) + Kdr, where

ψ is the current course of the ship, and Ψdesired is the

desired course in decision-making. Parameters of

the ship PD control model were adjusted, with a

proportional gain of Kp = 0.3 and a differential gain

of Kd = 1.

After collision avoidance, the ship needs to re-

sume navigation. During the research into the tim-

ing of ship resumption, there has always been a con-

troversy about whether the ship returns to its initial
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motion state or its original route after collision

avoidance. As far as collision avoidance is con-

cerned, it is only necessary for the ship to return to

its initial motion state, and returning to the original

route is a function and task of the navigational auto-

mation system. Four common models for calculat-

ing the timing of course resumption were given in

Reference [22].

1) Resume navigation when the target ship passes

the abeam position of the own ship.

2) After navigation resumption of the give-way

ship, make sure that DCPA between the ships is

greater than the minimum safe distance of ap-

proach.

3) Resume navigation when the target ship passes

the closest point of approach.

4) Resume navigation after the target ship passes

the bow of the own ship.

No matter which way is taken to resume the navi-

gation, it is necessary to ensure a safe distance of

approach between two ships. According to the prin-

ciple of geometric collision avoidance, this paper

predicted the timing of ship navigation resumption.

Fig. 5 shows a schematic diagram of calculating the

timing of ship navigation resumption.

Target ship

Steering pointNavigation
resumption point

Own ship

Fig. 5 Schematic diagram of solving the timing of re-sailing

Fig. 5 shows an encounter scenario of two ships.

In the scenario, the own ship heads upwards and al-

ters its course by ΔΨ to avoid the target ship. Spe-

cifically, R is the determined timing for collision

avoidance; G is the predicted navigation resumption

point; RML1 is the relative motion path before colli-

sion-avoidance steering; RML2 is the relative mo-

tion path after ship course is altered; RML1' is a

parallel path of RML1 and is tangent to the circle

of minimum safe distance of approach of the own

ship. G is the intersection between RML2 and

RML1'. The time the ship takes to navigate from R

to G is the timing for the ship to resume navigation.

With calculated time and course of ship navigation

resumption, the PD course controller can be used

for navigation resumption steering.

3 Simulation test and analysis

In this section, a simulation test was conducted to

verify the effectiveness of the intelligent collision

avoidance decision-making method for unmanned

ships based on driving practice. In the simulation

test, the own ship adopted the parameters of a typi-

cal standard Mariner ship of ITTC. Based on Simu-

link of Matlab 2016a, the contrast simulation test

was designed with python 3.6. The proposed meth-

od was compared with the traditional collision-

avoidance algorithm which fails to consider the ma-

neuvering motion model of a ship and determines

avoidance timing through a detection circle (with a

radius of 4 n mile). On this basis, the applicability

and superiority of the proposed method were veri-

fied in typical encounter scenarios. Table 3 lists the

initial navigation parameters of the unmanned ship

and dynamic target ships, and the simulation step

was set to 6 s.

Table 3 Ships' initial navigation state

VelocityCoursePosition
Ship

Unmanned ship

Dynamic target ship（TS1）

Dynamic target ship（TS2）

Dynamic target ship（TS3）

The goal of the simulation is that the unmanned

ship can approach the target point and avoid dynam-

ic target ships. In the case of no obstacle in the envi-

ronment or obstacles not within the safe distance of

approach, the unmanned ship maintains its course

or resumes its navigation, adjusting its direction to

move towards the target point. In the case of obsta-

cles within the safe distance of approach, the un-

manned ship avoids the obstacles in real time with

the proposed algorithm and the traditional collision-

avoidance algorithm. The simulation ends when the

unmanned ship reaches the target point.

In the simulation of collision avoidance, three dy-

namic target ships navigate with unchanged courses

and velocity, and encounter the unmanned ship suc-

cessively, forming crossing, head-on, and overtak-

ing situations. Fig. 6 shows the key moments of the

ship collision-avoidance simulation. In the figure,

the path intersections refer to historical paths of the

unmanned ship passing through the rear parts of dy-

namic target ships after collision avoidance.

At T = 1 000 s, judging that the target ship 1 en-
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ters its decision-making area, the unmanned ship an-

alyzes the course and azimuth of the target ship and

determines that there is a situation of crossing abaft

the beam through course understanding. In this

case, being a give-way ship, the own ship turns

rightwards for avoidance, and its optimal collision-

avoidance range is solved by the BOP intelligent

collision avoidance decision-making method. At

T = 2 000 s, the unmanned ship encounters the tar-

get ship 2, forming a head-on situation. In this case,

being a give-way ship, the own ship turns right-

wards for avoidance, and its optimal collision-

avoidance range is calculated by the algorithms. At

T = 4 500 s, the unmanned ship and the target ship

are in an overtaking situation. In this case, the own

ship is an overtaking ship, while the target ship is a

give-way ship. As the target point is on the right

side, the own ship overtakes from the starboard

side. Compared with the proposed BOP method, the

traditional collision-avoidance method yields fixed

and earlier avoidance time, smaller steering ranges,

and rougher paths. The total path of ship collision

avoidance for the traditional method is 32.952 n mile,

while that for the proposed BOP method is

25.022 n mile. Thus, the proposed method greatly

shortens the navigation distance and improves the

collision-avoidance performance.

From the simulation, when the unmanned ship

has a risk of collision with target ships, it can make

effective collision-avoidance decisions, and pro-

duce optimal collision-avoidance paths through the

intelligent collision avoidance decision-making al-

gorithm.

Fig. 7 shows the course and rudder-angle varia-

tions of the unmanned ship during collision avoid-

ance. From the figure, the course varies rapidly and

Fig. 6 Ships' collision avoidance simulation
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smoothly, with short adjustment time and small vi-

bration. Moreover, the steering is smooth and rea-

sonable, conforming to the navigation practice.

According to the simulation results, the un-

manned ship can safely avoid target ships in differ-

ent encounter situations, and produce optimal colli-

sion-avoidance strategies accordingly. This verifies

the effectiveness of the proposed algorithm.

4 Conclusions

By analyzing the problems in collision avoidance

decision-making of unmanned ships, this paper pro-

posed an intelligent collision avoidance decision-

making method based on driving practice. With this

method, unmanned ships can interact with the envi-

ronment in real time according to the information

from their perception systems, so as to make colli-

sion-avoidance decisions and plan paths in line with

COLREGS. Simulation tests in typical encounter

scenarios show that the model can autonomously

avoid collision in an unknown environment and cal-

culate optimal paths, proving the effectiveness of

the algorithm. In the following research, we need to

constantly improve the models. In view of more

complex environmental disturbances, we will add

domain models of static and dynamic obstacles to

better match the reality of navigation.
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基于驾驶实践的无人船
智能避碰决策方法

丁志国 1，张新宇*1，王程博 1，黎泉 2，安兰轩 1

1 大连海事大学 航海动态仿真与控制交通行业重点实验室，辽宁 大连 116026

2 大连海事大学 航海学院，辽宁 大连 116026

摘 要：［目的目的］为实现沿海无人驾驶船舶自主航行，充分考虑无人驾驶船舶智能避碰决策的合理性和实时性

后，提出并建立一种基于驾驶实践的无人船智能避碰决策方法。［方法方法］首先，以本体论为基础，设计无人驾驶

船舶航行态势本体概念模型，并结合《国际海上避碰规则》及良好的船艺将船舶航行态势量化划分为 12 种会遇

场景；然后，从驾驶实践的角度改进影响碰撞危险度因子的模糊隶属度函数，提出一种多元碰撞危险度评估模

型，实现船舶碰撞危险度的精确计算；最后，以船舶避碰总路径最短为目标函数，提出一种基于驾驶员视角（

BOP）的智能避碰决策模型，在船舶操纵性、舵角限幅等约束下求解最优避碰策略，并在典型的会遇场景下进行

仿真实验。［结果结果］结果表明，该方法可以准确判断驾驶航行态势，给出合理的转向策略，实现典型会遇场景下

的有效避碰。［结论结论］所做研究可为实现船舶自主航行提供理论基础和方法参考。

关键词：无人驾驶船舶；驾驶实践；智能避碰决策；国际海上避碰规则
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