Volume 17 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
SHI S K, HUANG X C, RAO Z Q, et al. Study on force spectrum characteristics of a pump-jet under inflow turbulence[J]. Chinese Journal of Ship Research, 2022, 17(1): 1–10 doi: 10.19693/j.issn.1673-3185.02249
Citation: SHI S K, HUANG X C, RAO Z Q, et al. Study on force spectrum characteristics of a pump-jet under inflow turbulence[J]. Chinese Journal of Ship Research, 2022, 17(1): 1–10 doi: 10.19693/j.issn.1673-3185.02249

Study on force spectrum characteristics of a pump-jet under inflow turbulence

doi: 10.19693/j.issn.1673-3185.02249
  • Received Date: 2020-12-31
  • Rev Recd Date: 2021-04-02
  • Available Online: 2022-02-25
  • Publish Date: 2022-03-02
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives   This paper aims to clarify the characteristics of the unsteady force spectrum of a pump-jet operating under inflow turbulence.   Methods  The turbulence grid and Fourier synthesis method are employed to produce inflow turbulence with spatial flow structure and temporal fluctuation, combined with large eddy simulation (LES) to obtain the broadband unsteady force spectrum of the pump-jet.   Results  The results show that the proposed method can obtain the unsteady force broadband spectrum for the duct, stator and rotor. The unsteady force broadband spectrum of the pump-jet is composed of the ''humps'' around the blade passing frequency and its multiples, the characteristic line spectrum at the stator blade passing frequency and the shaft frequency of the adjacent stator multiples. As the number of blades increases, the ''humps'' become more obvious and the characteristic peaks change periodically and reach the minimum when the number of blades is equal to the number of rotors. Due to the use of the stator and duct, the amplitudes of the unsteady force broadband spectrum of the pump-jet are higher than those of the propeller, but the ''humps'' are not as obvious.   Conclusions  The results of this paper can be helpful for clarifying the unsteady force characteristics of a pump-jet induced by inflow turbulence, and provide ideas for the vibration and noise reduction of pump-jets.
  • loading
  • [1]
    BLAKE W K. Mechanics of flow-induced sound and vibration[M]. Orlando: Academic Press, 1986: 10-12.
    华宏星, 俞强. 船舶艉部激励耦合振动噪声机理研究进展与展望[J]. 中国舰船研究, 2017, 12(4): 6–16. doi: 10.3969/j.issn.1673-3185.2017.04.002

    HUA H X, YU Q. Structural and acoustic response due to excitation from ship stern: overview and suggestions for future research[J]. Chinese Journal of Ship Research, 2017, 12(4): 6–16 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.04.002
    BENNAYA M, ZHANG W P, HEGAZE M M. Estimation of the induced hydrodynamic periodic forces of marine propeller under non-uniform inflow via CFD[J]. Applied Mechanics and Materials, 2014, 467: 293–299.
    ANDERSON J M, CATLETT M R, STEWART D O. Modeling rotor unsteady forces and sound due to homogeneous turbulence ingestion[J]. AIAA Journal, 2015, 53(1): 35–45.
    SEVIK M. Sound radiation from a subsonic rotor subjected to turbulence [C]//Proceedings of the International Symposium on Fluid Mechanics and Design of Turbomachinery. University Park, PA: The Pennsylvania State University, 1974, 304: 493–512.
    KIRSCHNER I N, CORRIVEAU P J, MUENCH J D, et al. Validation of an in-air acoustic radiation model using wind-tunnel measurements [C]//ASME Symposium on Flow Noise Modeling, Measurement, and Control, NCA 15ASME Symposium on Flow Noise Modeling, Measurement, and Control. ASME, 1993, 168: 1–5.
    CHEN Y, WANG L, HUA H X. Longitudinal vibration of marine propeller-shafting system induced by inflow turbulence[J]. Journal of Fluids and Structures, 2017, 68: 264–278. doi: 10.1016/j.jfluidstructs.2016.11.002
    谌勇, 童贤东, 华宏星. 湍流进流诱发的螺旋桨-轴系纵向振动特性研究[J]. 中国造船, 2017, 58(2): 46–59. doi: 10.3969/j.issn.1000-4882.2017.02.006

    CHEN Y, TONG X D, HUA H X. Elastic vibration of marine propeller-shaft system induced by ingested turbulence[J]. Shipbuilding of China, 2017, 58(2): 46–59 (in Chinese). doi: 10.3969/j.issn.1000-4882.2017.02.006
    王力, 谌勇, 郭云松, 等. 均匀湍流诱发的侧斜螺旋桨的随机振动特性研究[J]. 振动与冲击, 2018, 37(5): 7–12.

    WANG L, CHEN Y, GUO Y S, et al. Random vibration of a skewed propeller-shaft system induced by homogeneous turbulence[J]. Journal of Vibration and Shock, 2018, 37(5): 7–12 (in Chinese).
    TUTAR M, CELIK I, YAVUZ I. Modelling of effect of inflow turbulence on large eddy simulation of bluff body flows[J]. Mathematical and Computational Applications, 2006, 11(3): 225–234. doi: 10.3390/mca11020225
    YAO H Y, CAO L L, WU D Z, et al. Generation and distribution of turbulence-induced forces on a propeller[J]. Ocean Engineering, 2020, 206: 107255. doi: 10.1016/j.oceaneng.2020.107255
    于丰宁, 邹冬林, 饶柱石, 等. 泵喷推进器在敞水与艇后的激励力计算分析[J]. 船海工程, 2019, 48(4): 96–101. doi: 10.3963/j.issn.1671-7953.2019.04.022

    YU F N, ZOU D L, RAO Z S, et al. Analysis on exciting force of open water pump-jet and submarine with pump-jet[J]. Ship & Ocean Engineering, 2019, 48(4): 96–101 (in Chinese). doi: 10.3963/j.issn.1671-7953.2019.04.022
    姜汉. 泵喷推进器激振力特性数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    JIANG H. Numerical analysis of exciting force characteristic for pump jet propulsor[D]. Harbin: Harbin Engineering University, 2017 (in Chinese).
    KOBAYASHI T. Large Eddy simulation for engineering applications[J]. Fluid Dynamics Research, 2006, 38(2/3): 84–107.
    GEURTS B J, HOLM D D. Commutator errors in large-eddy simulation[J]. Journal of Physics A: Mathematical and General, 2006, 39(9): 2213–2229. doi: 10.1088/0305-4470/39/9/015
    CLARK R A, FERZIGER J H, REYNOLDS W C. Evaluation of subgrid-scale models using an accurately simulated turbulent flow[J]. Journal of Fluid Mechanics, 1979, 91(1): 1–16. doi: 10.1017/S002211207900001X
    MCMILLAN O J, FERZIGER J H. Direct testing of subgrid-scale models[J]. AIAA Journal, 1979, 17(12): 1340–1340. doi: 10.2514/3.61313
    FELTEN F, FAUTRELLE Y, TERRAIL Y D, et al. Numerical modelling of electromagnetically-driven turbulent flows using LES methods[J]. Applied Mathematical Modelling, 2004, 28(1): 15–27. doi: 10.1016/S0307-904X(03)00116-1
    SMIRNOV A, SHI S, CELIK I. Random flow generation technique for large eddy simulations and particle-dynamics modeling[J]. Journal of Fluids Engineering, 2001, 123(2): 359–371. doi: 10.1115/1.1369598
    KRAICHNAN R H. Diffusion by a random velocity field[J]. The Physics of Fluids, 1970, 13(1): 22–31. doi: 10.1063/1.1692799
    王力. 湍流进流诱发的螺旋桨轴系统随机振动特性分析[D]. 上海: 上海交通大学, 2017.

    WANG L. Random vibration of propeller-shaft system induced by inflow turbulence[D]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese).
    蒲汲君, 周其斗, 孟庆昌. 湍流中螺旋桨激振力宽频谱及参数影响研究[J]. 船舶力学, 2020, 24(1): 1–7. doi: 10.3969/j.issn.1007-7294.2020.01.001

    PU J J, ZHOU Q D, MENG Q C. Study of propeller broadband thrust spectrum and the effects of coefficient in turbulence[J]. Journal of Ship Mechanics, 2020, 24(1): 1–7 (in Chinese). doi: 10.3969/j.issn.1007-7294.2020.01.001
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article Views(924) PDF Downloads(152) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint