Citation: | CHU R T, LIU Z Q. Ship course sliding mode control system based on FTESO and sideslip angle compensation[J]. Chinese Journal of Ship Research, 2022, 17(1): 71–79 doi: 10.19693/j.issn.1673-3185.02267 |
[1] |
吴瑞, 杜佳璐, 孙玉清, 等. 基于状态反馈线性化和ESO的船舶航向跟踪控制[J]. 大连海事大学学报, 2019, 45(3): 93–99.
WU R, DU J L, SUN Y Q, et al. Ship course tracking control based on the state feedback linearization and ESO[J]. Journal of Dalian Maritime University, 2019, 45(3): 93–99 (in Chinese).
|
[2] |
ZHANG X K, ZHANG Q, REN H X, et al. Linear reduction of backstepping algorithm based on nonlinear decoration for ship course-keeping control system[J]. Ocean Engineering, 2018, 147: 1–8. doi: 10.1016/j.oceaneng.2017.10.017
|
[3] |
PERERA L P, SOARES C G. Pre-filtered sliding mode control for nonlinear ship steering associated with disturbances[J]. Ocean Engineering, 2012, 51: 49–62. doi: 10.1016/j.oceaneng.2012.04.014
|
[4] |
沈智鹏, 邹天宇. 控制方向未知的无人帆船自适应动态面航向控制[J]. 哈尔滨工程大学学报, 2019, 40(1): 94–101.
SHEN Z P, ZOU T Y. Adaptive dynamic surface course control for an unmanned sailboat with unknown control direction[J]. Journal of Harbin Engineering University, 2019, 40(1): 94–101 (in Chinese).
|
[5] |
朱冬健, 马宁, 顾解忡. 船舶航向非线性系统自适应模糊补偿控制[J]. 上海交通大学学报, 2015, 49(2): 250–254, 261.
ZHU D J, MA N, GU X C. Adaptive fuzzy compensation control for nonlinear ship course-keeping[J]. Journal of Shanghai Jiao Tong University, 2015, 49(2): 250–254, 261 (in Chinese).
|
[6] |
王东委, 富月. 基于高阶观测器和干扰补偿控制的模型预测控制方法[J]. 自动化学报, 2020, 46(6): 1220–1228.
WANG D W, FU Y. Model predict control method based on higher-order observer and disturbance compensation control[J]. Acta Automatica Sinica, 2020, 46(6): 1220–1228 (in Chinese).
|
[7] |
PERERA L P, SOARES C G. Lyapunov and Hurwitz based controls for input–output linearisation applied to nonlinear vessel steering[J]. Ocean Engineering, 2013, 66: 58–68. doi: 10.1016/j.oceaneng.2013.04.002
|
[8] |
HU C, WANG R R, YAN F J, et al. Robust composite nonlinear feedback path-following control for underactuated surface vessels with desired-heading amendment[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6386–6394. doi: 10.1109/TIE.2016.2573240
|
[9] |
BEVLY D A, RYU J, GERDES J C. Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 483–493. doi: 10.1109/TITS.2006.883110
|
[10] |
WANG N, SUN Z, YIN J C, et al. Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances[J]. IEEE Access, 2018, 6: 14059–14070. doi: 10.1109/ACCESS.2018.2797084
|
[11] |
李芸, 白响恩, 肖英杰. 基于新型扩张干扰观测器的船舶航向滑模控制[J]. 上海交通大学学报, 2014, 48(12): 1708–1713, 1720.
LI Y, BAI X E, XIAO Y J. Ship course sliding mode control system based on a novel extended state disturbance observer[J]. Journal of Shanghai Jiao Tong University, 2014, 48(12): 1708–1713, 1720 (in Chinese).
|
[12] |
XIONG S F, WANG W H, LIU X D, et al. A novel extended state observer[J]. ISA Transactions, 2015, 58: 309–317. doi: 10.1016/j.isatra.2015.07.012
|
[13] |
LIANG K, LIN X G, CHEN Y, et al. Adaptive sliding mode output feedback control for dynamic positioning ships with input saturation[J]. Ocean Engineering, 2020, 206: 107245. doi: 10.1016/j.oceaneng.2020.107245
|
[14] |
AN L, LI Y, CAO J, et al. Proximate time optimal for the heading control of underactuated autonomous underwater vehicle with input nonlinearities[J]. Applied Ocean Research, 2020, 95: 102002. doi: 10.1016/j.apor.2019.102002
|
[15] |
PERRUQUETTI W, FLOQUET T, MOULAY E. Finite-time observers: application to secure communication[J]. IEEE Transactions on Automatic Control, 2008, 53(1): 356–360. doi: 10.1109/TAC.2007.914264
|
[16] |
ROSIER L. Homogeneous Lyapunov function for homogeneous continuous vector field[J]. Systems and Control Letters, 1992, 19(6): 467–473. doi: 10.1016/0167-6911(92)90078-7
|
[17] |
HONG Y G, WANG J K, CHENG D Z. Adaptive finite-time control of nonlinear systems with parametric uncertainty[J]. IEEE Transactions on Automatic Control, 2006, 51(5): 858–862. doi: 10.1109/TAC.2006.875006
|
[18] |
SHEN Y J, XIA X H. Semi-global finite-time observers for nonlinear systems[J]. Automatica, 2008, 44(12): 3152–3156. doi: 10.1016/j.automatica.2008.05.015
|
[19] |
HARDY G H, LITTLEWOOD J E, PÓLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1952.
|
[20] |
ZOU A M, DE RUITER A H J, KUMAR K D. Distributed finite-time velocity-free attitude coordination control for spacecraft formations[J]. Automatica, 2016, 67: 46–53. doi: 10.1016/j.automatica.2015.12.029
|
[21] |
DO K D, JIANG Z P, PAN J. Robust adaptive path following of underactuated ships[J]. Automatica, 2004, 40(6): 929–944. doi: 10.1016/j.automatica.2004.01.021
|
[22] |
BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control, Signals, and Systems, 2005, 17(2): 101–127. doi: 10.1007/s00498-005-0151-x
|
![]() |
![]() |