Volume 17 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
CHU R T, LIU Z Q. Ship course sliding mode control system based on FTESO and sideslip angle compensation[J]. Chinese Journal of Ship Research, 2022, 17(1): 71–79 doi: 10.19693/j.issn.1673-3185.02267
Citation: CHU R T, LIU Z Q. Ship course sliding mode control system based on FTESO and sideslip angle compensation[J]. Chinese Journal of Ship Research, 2022, 17(1): 71–79 doi: 10.19693/j.issn.1673-3185.02267

Ship course sliding mode control system based on FTESO and sideslip angle compensation

doi: 10.19693/j.issn.1673-3185.02267
  • Received Date: 2021-01-16
  • Rev Recd Date: 2021-04-09
  • Available Online: 2022-02-24
  • Publish Date: 2022-03-02
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  To improve the performance of course tracking and reduce the course errors of an underactuated surface ship, a heading control method based on a finite-time extended state observer (FTESO) and sliding mode control algorithm is studied.   Methods  A pre-filter is proposed to reduce the influence of the large rate of speed change when steering. The time-varying sideslip angle is estimated by FTESO, and course error is amended by the estimated sideslip angle in a timely manner. To simplify the design of the controller, external disturbance and internal uncertainty in the yaw direction are estimated by the observer simultaneously, and compensated for in the controller design. Considering input saturation, a sliding mode control law is designed by combining FTESO and a sliding mode surface with an integral term. The stability of the control system is proven by the Lyapunov theory.   Results   The simulation results show that the proposed controller reduces course tracking error and makes it converge to zero in a shorter time.   Conclusions  The results of this study can provide references for the course tracking control design of surface ships.
  • loading
  • [1]
    吴瑞, 杜佳璐, 孙玉清, 等. 基于状态反馈线性化和ESO的船舶航向跟踪控制[J]. 大连海事大学学报, 2019, 45(3): 93–99.

    WU R, DU J L, SUN Y Q, et al. Ship course tracking control based on the state feedback linearization and ESO[J]. Journal of Dalian Maritime University, 2019, 45(3): 93–99 (in Chinese).
    [2]
    ZHANG X K, ZHANG Q, REN H X, et al. Linear reduction of backstepping algorithm based on nonlinear decoration for ship course-keeping control system[J]. Ocean Engineering, 2018, 147: 1–8. doi: 10.1016/j.oceaneng.2017.10.017
    [3]
    PERERA L P, SOARES C G. Pre-filtered sliding mode control for nonlinear ship steering associated with disturbances[J]. Ocean Engineering, 2012, 51: 49–62. doi: 10.1016/j.oceaneng.2012.04.014
    [4]
    沈智鹏, 邹天宇. 控制方向未知的无人帆船自适应动态面航向控制[J]. 哈尔滨工程大学学报, 2019, 40(1): 94–101.

    SHEN Z P, ZOU T Y. Adaptive dynamic surface course control for an unmanned sailboat with unknown control direction[J]. Journal of Harbin Engineering University, 2019, 40(1): 94–101 (in Chinese).
    [5]
    朱冬健, 马宁, 顾解忡. 船舶航向非线性系统自适应模糊补偿控制[J]. 上海交通大学学报, 2015, 49(2): 250–254, 261.

    ZHU D J, MA N, GU X C. Adaptive fuzzy compensation control for nonlinear ship course-keeping[J]. Journal of Shanghai Jiao Tong University, 2015, 49(2): 250–254, 261 (in Chinese).
    [6]
    王东委, 富月. 基于高阶观测器和干扰补偿控制的模型预测控制方法[J]. 自动化学报, 2020, 46(6): 1220–1228.

    WANG D W, FU Y. Model predict control method based on higher-order observer and disturbance compensation control[J]. Acta Automatica Sinica, 2020, 46(6): 1220–1228 (in Chinese).
    [7]
    PERERA L P, SOARES C G. Lyapunov and Hurwitz based controls for input–output linearisation applied to nonlinear vessel steering[J]. Ocean Engineering, 2013, 66: 58–68. doi: 10.1016/j.oceaneng.2013.04.002
    [8]
    HU C, WANG R R, YAN F J, et al. Robust composite nonlinear feedback path-following control for underactuated surface vessels with desired-heading amendment[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6386–6394. doi: 10.1109/TIE.2016.2573240
    [9]
    BEVLY D A, RYU J, GERDES J C. Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 483–493. doi: 10.1109/TITS.2006.883110
    [10]
    WANG N, SUN Z, YIN J C, et al. Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances[J]. IEEE Access, 2018, 6: 14059–14070. doi: 10.1109/ACCESS.2018.2797084
    [11]
    李芸, 白响恩, 肖英杰. 基于新型扩张干扰观测器的船舶航向滑模控制[J]. 上海交通大学学报, 2014, 48(12): 1708–1713, 1720.

    LI Y, BAI X E, XIAO Y J. Ship course sliding mode control system based on a novel extended state disturbance observer[J]. Journal of Shanghai Jiao Tong University, 2014, 48(12): 1708–1713, 1720 (in Chinese).
    [12]
    XIONG S F, WANG W H, LIU X D, et al. A novel extended state observer[J]. ISA Transactions, 2015, 58: 309–317. doi: 10.1016/j.isatra.2015.07.012
    [13]
    LIANG K, LIN X G, CHEN Y, et al. Adaptive sliding mode output feedback control for dynamic positioning ships with input saturation[J]. Ocean Engineering, 2020, 206: 107245. doi: 10.1016/j.oceaneng.2020.107245
    [14]
    AN L, LI Y, CAO J, et al. Proximate time optimal for the heading control of underactuated autonomous underwater vehicle with input nonlinearities[J]. Applied Ocean Research, 2020, 95: 102002. doi: 10.1016/j.apor.2019.102002
    [15]
    PERRUQUETTI W, FLOQUET T, MOULAY E. Finite-time observers: application to secure communication[J]. IEEE Transactions on Automatic Control, 2008, 53(1): 356–360. doi: 10.1109/TAC.2007.914264
    [16]
    ROSIER L. Homogeneous Lyapunov function for homogeneous continuous vector field[J]. Systems and Control Letters, 1992, 19(6): 467–473. doi: 10.1016/0167-6911(92)90078-7
    [17]
    HONG Y G, WANG J K, CHENG D Z. Adaptive finite-time control of nonlinear systems with parametric uncertainty[J]. IEEE Transactions on Automatic Control, 2006, 51(5): 858–862. doi: 10.1109/TAC.2006.875006
    [18]
    SHEN Y J, XIA X H. Semi-global finite-time observers for nonlinear systems[J]. Automatica, 2008, 44(12): 3152–3156. doi: 10.1016/j.automatica.2008.05.015
    [19]
    HARDY G H, LITTLEWOOD J E, PÓLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1952.
    [20]
    ZOU A M, DE RUITER A H J, KUMAR K D. Distributed finite-time velocity-free attitude coordination control for spacecraft formations[J]. Automatica, 2016, 67: 46–53. doi: 10.1016/j.automatica.2015.12.029
    [21]
    DO K D, JIANG Z P, PAN J. Robust adaptive path following of underactuated ships[J]. Automatica, 2004, 40(6): 929–944. doi: 10.1016/j.automatica.2004.01.021
    [22]
    BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control, Signals, and Systems, 2005, 17(2): 101–127. doi: 10.1007/s00498-005-0151-x
  • ZG2267_en.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article Views(636) PDF Downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return