Citation: | CHEN Y Q, ZHANG Y, ZHANG X T. Modelling methods for complex interconnection of very large floating structures based on discrete-module-beam hydroelasticity theory[J]. Chinese Journal of Ship Research, 2022, 17(1): 117–125, 146 doi: 10.19693/j.issn.1673-3185.02230 |
[1] |
WANG C M, TAY Z Y. Very large floating structures: applications, research and development[J]. Procedia Engineering, 2011, 14: 62–72. doi: 10.1016/j.proeng.2011.07.007
|
[2] |
PRICE W G, WU Y S. Hydroelasticity of marine structures[M]. North Holland: Elsevier Science Publishers, 1985: 311-337.
|
[3] |
KHABAKHPASHEVA T I, KOROBKIN A A. Hydroelastic behaviour of compound floating plate in waves[J]. Journal of Engineering Mathematics, 2002, 44(1): 21–40. doi: 10.1023/A:1020592414338
|
[4] |
SENJANOVIĆ I, MALENICA Š, TOMAŠEVIĆ S. Investigation of ship hydroelasticity[J]. Ocean Engineering, 2008, 35(5–6): 523–535. doi: 10.1016/j.oceaneng.2007.11.008
|
[5] |
LOUKOGEORGAKI E, MICHAILIDES C, ANGELIDES D C. Hydroelastic analysis of a flexible mat-shaped floating breakwater under oblique wave action[J]. Journal of Fluids and Structures, 2012, 31: 103–124. doi: 10.1016/j.jfluidstructs.2012.02.011
|
[6] |
DING J, WU Y S, ZHOU Y, et al. A direct coupling analysis method of hydroelastic responses of VLFS in complicated ocean geographical environment[J]. Journal of Hydrodynamics, 2019, 31(3): 582–593. doi: 10.1007/s42241-019-0047-8
|
[7] |
LU D, FU S X, ZHANG X T, et al. A method to estimate the hydroelastic behaviour of VLFS based on multi-rigid-body dynamics and beam bending[J]. Ships and Offshore Structures, 2019, 14(4): 354–362. doi: 10.1080/17445302.2016.1186332
|
[8] |
SUN Y G, LU D, XU J, et al. A study of hydroelastic behavior of hinged VLFS[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(2): 170–179. doi: 10.1016/j.ijnaoe.2017.05.002
|
[9] |
ZHANG X T, LU D. An extension of a discrete-module-beam-bending-based hydroelasticity method for a flexible structure with complex geometric features[J]. Ocean Engineering, 2018, 163: 22–28. doi: 10.1016/j.oceaneng.2018.05.050
|
[10] |
ZHANG X T, LU D, GAO Y, et al. A time domain discrete-module-beam-bending-based hydroelasticity method for the transient response of very large floating structures under unsteady external loads[J]. Ocean Engineering, 2018, 164: 332–349. doi: 10.1016/j.oceaneng.2018.06.058
|
[11] |
WEI W, FU S X, MOAN T, et al. A time-domain method for hydroelasticity of very large floating structures in inhomogeneous sea conditions[J]. Marine Structures, 2018, 57: 180–192. doi: 10.1016/j.marstruc.2017.10.008
|
[12] |
JIN C, BAKTI F P, KIM M. Multi-floater-mooring coupled time-domain hydro-elastic analysis in regular and irregular waves[J]. Applied Ocean Research, 2020, 101: 102276. doi: 10.1016/j.apor.2020.102276
|
[13] |
FU S X, MOAN T, CHEN X J, et al. Hydroelastic analysis of flexible floating interconnected structures[J]. Ocean Engineering, 2007, 34(11–12): 1516–1531. doi: 10.1016/j.oceaneng.2007.01.003
|