Citation: | SUN H B, XIAO J F, WANG W, et al. Numerical solution and sensitivity analysis of hydrodynamic force derivatives on maneuverability prediction[J]. Chinese Journal of Ship Research, 2022, 17(1): 60–70 doi: 10.19693/j.issn.1673-3185.02243 |
[1] |
苏兴翘, 高士奇, 黄衍顺. 船舶操纵性[M]. 北京: 国防工业出版社, 1989.
SU X Q, GAO S Q, HUANG Y S. Ship maneuverability[M]. Beijing: National Defense Industry Press, 1989 (in Chinese).
|
[2] |
IMO. Standards for ship manoeuvrability: MSC. 137(76)[S]. London, UK: IMO, 2002.
|
[3] |
IMO. Explanatory notes to the standards for ship manoeuvrability: MSC/Circ. 1053[S]. London, UK: IMO, 2002.
|
[4] |
ITTC. Final report and recommendations to the 25th ITTC[C]//Proceedings of the 25th International Towing Tank Conference. Fukuoka, Japan: ITTC, 2008.
|
[5] |
CARRICA P M, ISMAIL F, HYMAN M, et al. Turn and zigzag maneuvers of a surface combatant using a URANS approach with dynamic overset grids[J]. Journal of Marine Science and Technology, 2013, 18(2): 166–181. doi: 10.1007/s00773-012-0196-8
|
[6] |
WANG J H, ZHAO W W, WAN D C. Free maneuvering simulation of ONR Tumblehome using overset grid method in naoe-FOAM-SJTU solver[C]//Proceedings of the 31th Symposium on Naval Hydrodynamics. Monterey, USA: [s.n.] 2016.
|
[7] |
MOFIDI A, MARTIN E J, CARRICA M P. Propeller/rudder interaction with direct and coupled CFD/potential flow propeller approaches, and application to a zigzag manoeuvre[J]. Ship Technology Research, 2018, 65(1): 10–31. doi: 10.1080/09377255.2017.1399970
|
[8] |
JIN Y T, DUFFY J, CHAI S H, et al. DTMB 5415M dynamic manoeuvres with URANS computation using body-force and discretised propeller models[J]. Ocean Engineering, 2019, 182: 305–317. doi: 10.1016/j.oceaneng.2019.04.036
|
[9] |
KIM H, AKIMOTO H, ISLAM H. Estimation of the hydrodynamic derivatives by RANS simulation of planar motion mechanism test[J]. Ocean Engineering, 2015, 108: 129–139. doi: 10.1016/j.oceaneng.2015.08.010
|
[10] |
SAKAMOTO N, CARRICA P M, STERN F. URANS simulations of static and dynamic maneuvering for surface combatant: part 1. verification and validation for forces, moment, and hydrodynamic derivatives[J]. Journal of Marine Science and Technology, 2012, 17(4): 422–445. doi: 10.1007/s00773-012-0178-x
|
[11] |
ROY-CHOUDHURY S, DASH A K, NAGARAJAN V, et al. CFD simulations of steady drift and yaw motions in deep and shallow water[J]. Ocean Engineering, 2017, 142: 161–184. doi: 10.1016/j.oceaneng.2017.06.058
|
[12] |
程捷, 张志国, 蒋奉兼, 等. 平面运动机构试验的数值模拟[J]. 水动力学研究与进展 (A辑), 2013, 28(4): 460–464.
CHENG J, ZHANG Z G, JIANG F J, et al. Numerical simulation of the planar motion mechanism tests[J]. Chinese Journal of Hydrodynamics (Ser. A), 2013, 28(4): 460–464 (in Chinese).
|
[13] |
李冬琴, 徐士友, 刘存杰. 船舶低频纯横荡及纯首摇运动数值仿真与分析[J]. 舰船科学技术, 2016, 38(9): 9–13.
LI D Q, XU S Y, LIU C J. Ship low-frequency pure sway and pure yaw motion numerical simulation and analysis[J]. Ship Science and Technology, 2016, 38(9): 9–13 (in Chinese).
|
[14] |
王建华, 万德成. 基于重叠网格技术数值模拟船舶纯摇首运动[J]. 水动力学研究与进展 (A辑), 2016, 31(5): 567–574.
WANG J H, WAN D C. Numerical simulation of pure yaw motion using dynamic overset grid technology[J]. Chinese Journal of Hydrodynamics (Ser. A), 2016, 31(5): 567–574 (in Chinese).
|
[15] |
CURA-HOCHBAUM A. On the numerical prediction of the ship's manoeuvring behavior[J]. Ship Science & Technology, 2011, 5(9): 27–39.
|
[16] |
GUO H P, ZOU Z J. System-based investigation on 4-DOF ship maneuvering with hydrodynamic derivatives determined by RANS simulation of captive model tests[J]. Applied Ocean Research, 2017, 68: 11–25. doi: 10.1016/j.apor.2017.08.006
|
[17] |
HAJIVAND A, MOUSAVIZADEGAN S H. Virtual simulation of maneuvering captive tests for a surface vessel[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7(5): 848–872. doi: 10.1515/ijnaoe-2015-0060
|
[18] |
SUKAS O F, KINACI O K, BAL S. System-based prediction of maneuvering performance of twin-propeller and twin-rudder ship using a modular mathematical model[J]. Applied Ocean Research, 2019, 84: 145–162. doi: 10.1016/j.apor.2019.01.008
|
[19] |
刘厚文. 船舶操纵性仿真与舵鳍联合控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
LIU H W. Simulation of ship maneuvering and study of rudder/fin roll stabilization control[D]. Harbin: Harbin Engineering University, 2013 (in Chinese).
|
[20] |
LYSTER C A, KNIGHTS H L. Prediction equations for ships' turning circles[J]. North East Coast Institution of Engineers & Shipbuilders, 1979, 95(4): 217–222.
|