Volume 18 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
PENG E, ZOU S N, LI S Z, et al. Evolutions of induced electromagnetic signatures of submarine under natural cavitation[J]. Chinese Journal of Ship Research, 2023, 18(4): 140–150 doi: 10.19693/j.issn.1673-3185.03246
Citation: PENG E, ZOU S N, LI S Z, et al. Evolutions of induced electromagnetic signatures of submarine under natural cavitation[J]. Chinese Journal of Ship Research, 2023, 18(4): 140–150 doi: 10.19693/j.issn.1673-3185.03246

Evolutions of induced electromagnetic signatures of submarine under natural cavitation

doi: 10.19693/j.issn.1673-3185.03246
  • Received Date: 2023-01-10
  • Rev Recd Date: 2023-04-18
  • Available Online: 2023-08-01
  • Publish Date: 2023-08-28
    © 2023 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objective  The induced electromagnetic properties brought forth by disturbed seawater cutting the geomagnetic field can provide important information for non-acoustic detection technologies. In view of the complex and highly nonlinear interaction between the flow field and electromagnetic field of a high-speed submarine, it is necessary to deeply analyze the influence of the turbulence structure caused by natural cavitation on the induced electromagnetic field.  Methods  First, a multi-physical field mathematical model of fluid-electromagnetic coupling is established on the basis of hydrodynamics and electromagnetics. Next, the intensity and range of near-field electromagnetic signatures in the cavitation evolution, and the time-frequency characteristics of the induced electric field under different cavitation numbers, are obtained through numerical simulation using Fluent software.  Results  The simulation results demonstrate that the electromagnetic field shows obvious quasi-periodic unsteady fluctuation features due to the evolution of the cavitation morphology. The magnitudes of the induced electric field and magnetic field are 10−1 mV/m and 10−2 nT respectively, which are within the detection range of the most sophisticated sensors. Additionally, the cavitation number is highly correlated with the time-frequency characteristics of the induced electric field. When the cavitation number decreases from 0.4 to 0.2, the fluctuation intensity of the induced electric field is significantly enhanced, its main frequency decreases from 49.94 Hz to 34.19 Hz, and the low-frequency fluctuation component increases accordingly.  Conclusion  The induced electromagnetic characteristics of submarines can be employed to guide the non-acoustic detection of underwater moving bodies, and the main frequency range of the induced electric field can provide references for the electromagnetic communication frequency selection of high-speed submarines.
  • loading
  • [1]
    刘大明, 刘胜道, 肖昌汉, 等. 舰艇闭环消磁技术国内外研究现状[J]. 船电技术, 2011, 31(10): 6–9. doi: 10.3969/j.issn.1003-4862.2011.10.002

    LIU D M, LIU S D, XIAO C H, et al. Analysis on ship's closed-loop degaussing technology in China and abroad[J]. Marine Electric & Electronic Technology, 2011, 31(10): 6–9 (in Chinese). doi: 10.3969/j.issn.1003-4862.2011.10.002
    HOLMES J J. Reduction of a ship's magnetic field signatures[M]. Cham: Springer, 2008: 1-68.
    FARADAY M. VI. The Bakerian lecture. Experimental researches in electricity. Second series[J]. Philosophical Transactions of the Royal Society of London, 1832, 122: 163–194. doi: 10.1098/rstl.1832.0007
    MADURASINGHE D. Induced electromagnetic fields associated with large ship wakes[J]. Wave Motion, 1994, 20(3): 283–292. doi: 10.1016/0165-2125(94)90053-1
    DEACON G E R. Information from electric currents in the sea[J]. The Journal of Navigation, 1955, 8(2): 117–120. doi: 10.1017/S0373463300015630
    FRASER D C. Magnetic fields of ocean waves[J]. Nature, 1965, 206(4984): 605–606. doi: 10.1038/206605a0
    张伽伟, 姜润翔, 贾亦卓. 海浪感应电磁场特性研究[J]. 华中科技大学学报(自然科学版), 2019, 47(9): 31–35. doi: 10.13245/j.hust.190906

    ZHANG J W, JIANG R X, JIA Y Z. Research on electromagnetic fields induced by ocean wave[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(9): 31–35 (in Chinese). doi: 10.13245/j.hust.190906
    汪超, 杜伟, 李广华, 等. 海洋内波影响水下航行体水动力特性数值模拟[J]. 中国舰船研究, 2022, 17(3): 102–111.

    WANG C, DU W, LI G H, et al. Numerical simulation of influence of ocean internal waves on hydrodynamic characteristics of underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(3): 102–111 (in Chinese).
    CHAVE A D. On the electromagnetic fields induced by oceanic internal waves[J]. Journal of Geophysical Research:Oceans, 1984, 89(C6): 10519–10528. doi: 10.1029/JC089iC06p10519
    SAYNISCH J, PETEREIT J, IRRGANG C, et al. Impact of oceanic warming on electromagnetic oceanic tidal signals: a CMIP5 climate model-based sensitivity study[J]. Geophysical Research Letters, 2017, 44(10): 4994–5000. doi: 10.1002/2017GL073683
    MADURASINGHE D, TUCK E O. The induced electromagnetic field associated with submerged moving bodies in an unstratified conducting fluid[J]. IEEE Journal of Oceanic Engineering, 1994, 19(2): 193–199. doi: 10.1109/48.286641
    王向坤, 李予国, 李建凯, 等. 有限水深海浪背景下船舶尾流感应电磁场数值模拟[J]. 中国海洋大学学报, 2020, 50(12): 107–114.

    WANG X K, LI Y G, LI J K, et al. Numerical simulation of electromagnetic fields induced by ship wakes in ocean waves of finite depth water[J]. Periodical of Ocean University of China, 2020, 50(12): 107–114 (in Chinese).
    ZHU X J, XIA M Y. Magnetic field induced by wake of moving body in wind waves[J]. Progress in Electromagnetics Research, 2014, 149: 109–118. doi: 10.2528/PIER14070706
    XU Z H, DU C P, XIA M Y. Evaluation of electromagnetic fields induced by wake of an undersea-moving slender body[J]. IEEE Access, 2018, 6: 2943–2951. doi: 10.1109/ACCESS.2017.2786246
    张伽伟, 熊露, 姜润翔. 浅海中水下航行器尾流感应电磁场建模与仿真[J]. 系统工程与电子技术, 2016, 38(5): 1004–1009. doi: 10.3969/j.issn.1001-506X.2016.05.06

    ZHANG J W, XIONG L, JIANG R X. Modeling and simulation of electromagnetic field induced by wake of a submerged vehicle moving in shallow sea[J]. Systems Engineering and Electronics, 2016, 38(5): 1004–1009 (in Chinese). doi: 10.3969/j.issn.1001-506X.2016.05.06
    XU Z H, DU C P, XIA M Y. Modeling of electromagnetic fields induced by moving seawater due to a undersea vehicle[C]//2017 IEEE International Conference on Computational Electromagnetics (ICCEM). Kumamoto: IEEE, 2017: 72-74.
    GHAHRAMANI E, STRÖM H, BENSOW R E. Numerical simulation and analysis of multi-scale cavitating flows[J]. Journal of Fluid Mechanics, 2021, 922: A22. doi: 10.1017/jfm.2021.424
    VAHAJI S, CHEN L, CHEUNG S C P, et al. Numerical investigation on bubble size distribution around an under-water vehicle[J]. Applied Ocean Research, 2018, 78: 254–266. doi: 10.1016/j.apor.2018.06.013
    朱小敏, 颜开, 江汉明. 空泡及分离尾流对细长回转体附加质量影响的试验研究[J]. 船舶力学, 1998, 2(5): 28–34.

    ZHU X M, YAN K, JIANG H M. Experimental investi-gation on added mass of slender bodies of revolution running with cavity[J]. Journal of Ship Mechanics, 1998, 2(5): 28–34 (in Chinese).
    SCHNERR G H, SAUER J. Physical and numerical modeling of unsteady cavitation dynamics[C]//ICMF-2001, 4th International Conference on Multiphase Flow. New Orleans: ICMF, 2001.
    GROVES N C, HUANG T T, CHANG M S. Geometric characteristics of DARPA SUBOFF models (DTRC model numbers 5470 and 5471)[R]. [S. l. ]: David Taylor Research Center Bethesda MD Ship Hydromechanics Dept, 1989.
    ANSYS Inc. . ANSYS CFX-solver theory guide[R]. Canonsburg, PA: ANSYS Inc. , 2009: 724-746.
    PLESSET M S, PROSPERETTI A. Bubble dynamics and cavitation[J]. Annual Review of Fluid Mechanics, 1977, 9(1): 145–185. doi: 10.1146/annurev.fl.09.010177.001045
    ROUSE H. Cavitation and pressure distribution-head forms at angles of yaw: IOWA Contract Nonr-1509(03)[R]. Ames: State University of Iowa, 1962.
    SHANG Z. Numerical investigations of supercavitation around blunt bodies of submarine shape[J]. Applied Mathematical Modelling, 2013, 37(20/21): 8836–8845.
    LI L M, JIA Q Q, LIU Z Q, et al. Eulerian two-phase modeling of cavitation for high-speed UUV using different turbulence models[C]//2015 IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Shenyang: IEEE, 2015: 1247-1252.
    ZIKANOV O, KRASNOV D, LI Y Q, et al. Patterned turbulence in spatially evolving magnetohydrodynamic duct and pipe flows[J]. Theoretical and Computational Fluid Dynamics, 2014, 28(3): 319–334. doi: 10.1007/s00162-013-0317-y
    HARTMANN J, LAZARUS F. Hg-dynamics II: experimental investigations on the flow of mercury in a homogeneous magnetic field[M]. København: Levin & Munksgaard, 1937: 1-45.
    LABERTEAUX K R, CECCIO S L. Partial cavity flows. Part 2. Cavities forming on test objects with spanwise variation[J]. Journal of Fluid Mechanics, 2001, 431: 43–63. doi: 10.1017/S0022112000002937
    于安斌, 叶金铭, 王友乾. 舵空化的精细流场及其非定常水动力性能数值计算[J]. 中国舰船研究, 2018, 13(5): 68–76. doi: 10.19693/j.issn.1673-3185.01184

    YU A B, YE J M, WANG Y Q. Fine flow field and unsteady hydrodynamic performance calculation for rudder cavitation[J]. Chinese Journal of Ship Research, 2018, 13(5): 68–76 (in Chinese). doi: 10.19693/j.issn.1673-3185.01184
    FOETH E J, VAN TERWISGA T, VAN DOORNE C. On the collapse structure of an attached cavity on a three-dimensional hydrofoil[J]. Journal of Fluids Engineering, 2008, 130(7): 071303. doi: 10.1115/1.2928345
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article Views(2517) PDF Downloads(691) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint