Citation: | PENG E, ZOU S N, LI S Z, et al. Evolutions of induced electromagnetic signatures of submarine under natural cavitation[J]. Chinese Journal of Ship Research, 2023, 18(4): 140–150 doi: 10.19693/j.issn.1673-3185.03246 |
[1] |
刘大明, 刘胜道, 肖昌汉, 等. 舰艇闭环消磁技术国内外研究现状[J]. 船电技术, 2011, 31(10): 6–9. doi: 10.3969/j.issn.1003-4862.2011.10.002
LIU D M, LIU S D, XIAO C H, et al. Analysis on ship's closed-loop degaussing technology in China and abroad[J]. Marine Electric & Electronic Technology, 2011, 31(10): 6–9 (in Chinese). doi: 10.3969/j.issn.1003-4862.2011.10.002
|
[2] |
HOLMES J J. Reduction of a ship's magnetic field signatures[M]. Cham: Springer, 2008: 1-68.
|
[3] |
FARADAY M. VI. The Bakerian lecture. Experimental researches in electricity. Second series[J]. Philosophical Transactions of the Royal Society of London, 1832, 122: 163–194. doi: 10.1098/rstl.1832.0007
|
[4] |
MADURASINGHE D. Induced electromagnetic fields associated with large ship wakes[J]. Wave Motion, 1994, 20(3): 283–292. doi: 10.1016/0165-2125(94)90053-1
|
[5] |
DEACON G E R. Information from electric currents in the sea[J]. The Journal of Navigation, 1955, 8(2): 117–120. doi: 10.1017/S0373463300015630
|
[6] |
FRASER D C. Magnetic fields of ocean waves[J]. Nature, 1965, 206(4984): 605–606. doi: 10.1038/206605a0
|
[7] |
张伽伟, 姜润翔, 贾亦卓. 海浪感应电磁场特性研究[J]. 华中科技大学学报(自然科学版), 2019, 47(9): 31–35. doi: 10.13245/j.hust.190906
ZHANG J W, JIANG R X, JIA Y Z. Research on electromagnetic fields induced by ocean wave[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(9): 31–35 (in Chinese). doi: 10.13245/j.hust.190906
|
[8] |
汪超, 杜伟, 李广华, 等. 海洋内波影响水下航行体水动力特性数值模拟[J]. 中国舰船研究, 2022, 17(3): 102–111.
WANG C, DU W, LI G H, et al. Numerical simulation of influence of ocean internal waves on hydrodynamic characteristics of underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(3): 102–111 (in Chinese).
|
[9] |
CHAVE A D. On the electromagnetic fields induced by oceanic internal waves[J]. Journal of Geophysical Research:Oceans, 1984, 89(C6): 10519–10528. doi: 10.1029/JC089iC06p10519
|
[10] |
SAYNISCH J, PETEREIT J, IRRGANG C, et al. Impact of oceanic warming on electromagnetic oceanic tidal signals: a CMIP5 climate model-based sensitivity study[J]. Geophysical Research Letters, 2017, 44(10): 4994–5000. doi: 10.1002/2017GL073683
|
[11] |
MADURASINGHE D, TUCK E O. The induced electromagnetic field associated with submerged moving bodies in an unstratified conducting fluid[J]. IEEE Journal of Oceanic Engineering, 1994, 19(2): 193–199. doi: 10.1109/48.286641
|
[12] |
王向坤, 李予国, 李建凯, 等. 有限水深海浪背景下船舶尾流感应电磁场数值模拟[J]. 中国海洋大学学报, 2020, 50(12): 107–114.
WANG X K, LI Y G, LI J K, et al. Numerical simulation of electromagnetic fields induced by ship wakes in ocean waves of finite depth water[J]. Periodical of Ocean University of China, 2020, 50(12): 107–114 (in Chinese).
|
[13] |
ZHU X J, XIA M Y. Magnetic field induced by wake of moving body in wind waves[J]. Progress in Electromagnetics Research, 2014, 149: 109–118. doi: 10.2528/PIER14070706
|
[14] |
XU Z H, DU C P, XIA M Y. Evaluation of electromagnetic fields induced by wake of an undersea-moving slender body[J]. IEEE Access, 2018, 6: 2943–2951. doi: 10.1109/ACCESS.2017.2786246
|
[15] |
张伽伟, 熊露, 姜润翔. 浅海中水下航行器尾流感应电磁场建模与仿真[J]. 系统工程与电子技术, 2016, 38(5): 1004–1009. doi: 10.3969/j.issn.1001-506X.2016.05.06
ZHANG J W, XIONG L, JIANG R X. Modeling and simulation of electromagnetic field induced by wake of a submerged vehicle moving in shallow sea[J]. Systems Engineering and Electronics, 2016, 38(5): 1004–1009 (in Chinese). doi: 10.3969/j.issn.1001-506X.2016.05.06
|
[16] |
XU Z H, DU C P, XIA M Y. Modeling of electromagnetic fields induced by moving seawater due to a undersea vehicle[C]//2017 IEEE International Conference on Computational Electromagnetics (ICCEM). Kumamoto: IEEE, 2017: 72-74.
|
[17] |
GHAHRAMANI E, STRÖM H, BENSOW R E. Numerical simulation and analysis of multi-scale cavitating flows[J]. Journal of Fluid Mechanics, 2021, 922: A22. doi: 10.1017/jfm.2021.424
|
[18] |
VAHAJI S, CHEN L, CHEUNG S C P, et al. Numerical investigation on bubble size distribution around an under-water vehicle[J]. Applied Ocean Research, 2018, 78: 254–266. doi: 10.1016/j.apor.2018.06.013
|
[19] |
朱小敏, 颜开, 江汉明. 空泡及分离尾流对细长回转体附加质量影响的试验研究[J]. 船舶力学, 1998, 2(5): 28–34.
ZHU X M, YAN K, JIANG H M. Experimental investi-gation on added mass of slender bodies of revolution running with cavity[J]. Journal of Ship Mechanics, 1998, 2(5): 28–34 (in Chinese).
|
[20] |
SCHNERR G H, SAUER J. Physical and numerical modeling of unsteady cavitation dynamics[C]//ICMF-2001, 4th International Conference on Multiphase Flow. New Orleans: ICMF, 2001.
|
[21] |
GROVES N C, HUANG T T, CHANG M S. Geometric characteristics of DARPA SUBOFF models (DTRC model numbers 5470 and 5471)[R]. [S. l. ]: David Taylor Research Center Bethesda MD Ship Hydromechanics Dept, 1989.
|
[22] |
ANSYS Inc. . ANSYS CFX-solver theory guide[R]. Canonsburg, PA: ANSYS Inc. , 2009: 724-746.
|
[23] |
PLESSET M S, PROSPERETTI A. Bubble dynamics and cavitation[J]. Annual Review of Fluid Mechanics, 1977, 9(1): 145–185. doi: 10.1146/annurev.fl.09.010177.001045
|
[24] |
ROUSE H. Cavitation and pressure distribution-head forms at angles of yaw: IOWA Contract Nonr-1509(03)[R]. Ames: State University of Iowa, 1962.
|
[25] |
SHANG Z. Numerical investigations of supercavitation around blunt bodies of submarine shape[J]. Applied Mathematical Modelling, 2013, 37(20/21): 8836–8845.
|
[26] |
LI L M, JIA Q Q, LIU Z Q, et al. Eulerian two-phase modeling of cavitation for high-speed UUV using different turbulence models[C]//2015 IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Shenyang: IEEE, 2015: 1247-1252.
|
[27] |
ZIKANOV O, KRASNOV D, LI Y Q, et al. Patterned turbulence in spatially evolving magnetohydrodynamic duct and pipe flows[J]. Theoretical and Computational Fluid Dynamics, 2014, 28(3): 319–334. doi: 10.1007/s00162-013-0317-y
|
[28] |
HARTMANN J, LAZARUS F. Hg-dynamics II: experimental investigations on the flow of mercury in a homogeneous magnetic field[M]. København: Levin & Munksgaard, 1937: 1-45.
|
[29] |
LABERTEAUX K R, CECCIO S L. Partial cavity flows. Part 2. Cavities forming on test objects with spanwise variation[J]. Journal of Fluid Mechanics, 2001, 431: 43–63. doi: 10.1017/S0022112000002937
|
[30] |
于安斌, 叶金铭, 王友乾. 舵空化的精细流场及其非定常水动力性能数值计算[J]. 中国舰船研究, 2018, 13(5): 68–76. doi: 10.19693/j.issn.1673-3185.01184
YU A B, YE J M, WANG Y Q. Fine flow field and unsteady hydrodynamic performance calculation for rudder cavitation[J]. Chinese Journal of Ship Research, 2018, 13(5): 68–76 (in Chinese). doi: 10.19693/j.issn.1673-3185.01184
|
[31] |
FOETH E J, VAN TERWISGA T, VAN DOORNE C. On the collapse structure of an attached cavity on a three-dimensional hydrofoil[J]. Journal of Fluids Engineering, 2008, 130(7): 071303. doi: 10.1115/1.2928345
|