Volume 17 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
HE W, GUO J W, HU X F, et al. Influence of lift distribution coefficient on hydrodynamic performance of propeller in forward and astern mode of operation by numerical analysis[J]. Chinese Journal of Ship Research, 2022, 17(1): 42–50 doi: 10.19693/j.issn.1673-3185.02288
Citation: HE W, GUO J W, HU X F, et al. Influence of lift distribution coefficient on hydrodynamic performance of propeller in forward and astern mode of operation by numerical analysis[J]. Chinese Journal of Ship Research, 2022, 17(1): 42–50 doi: 10.19693/j.issn.1673-3185.02288

Influence of lift distribution coefficient on hydrodynamic performance of propeller in forward and astern mode of operation by numerical analysis

doi: 10.19693/j.issn.1673-3185.02288
  • Received Date: 2021-02-02
  • Rev Recd Date: 2021-04-07
  • Available Online: 2022-01-29
  • Publish Date: 2022-03-02
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  The influence of the geometrical parameters of propeller on its hydrodynamic performance in forward and astern mode of operation is studied by numerical simulation.  Methods  Taking a 33 000 DWT oil product tanker as the application object, the hydrodynamic performance of a MAU-series propeller and three theoretical propellers operated in forward and astern mode is simulated using the RANS method combined with the Realizable k-ε turbulence model. The influence of the lift distribution coefficient, pitch and camber combination on the hydrodynamic performance of propeller in both operation modes are then discussed through comparison.  Results  The results show that in forward and astern operation mode, the pitch of the blade will generate positive lift, whereas the camber of the blade will generate positive and negative lift alternately. Properly increasing the camber and reducing the pitch of the propeller in design is beneficial for improving its open water efficiency in forward operation mode. On the contrary, adopting the combination of a large pitch and a small camber is beneficial for increasing reverse thrust.  Conclusion  Based on the experimental data, suggestions on performace trade-offs of designing a propeller in both operation modes are given.
  • loading
  • [1]
    HECKER R, REMMERS K. Four quadrant open-water performance of propellers 3710, 4024, 4086, 4381, 4382, 4383, 4384 and 4426[R]. Bethesda, USA: David Taylor Naval Ship Research and Development Center, 1971: 411-417.
    [2]
    JIANG C W, HUANG T T. Propeller hydrodynamic loads and blade stresses and deflections during backing and crashback operations[C]//Propellers/Shafting'91 Symposium. Virginia Beach, VA, USA: TRID, 1991.
    [3]
    王国亮. 冰—桨—流相互作用下的螺旋桨水动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    WANG G L. Study of propeller hydrodynamic performance under ice-propeller-flow interaction[D]. Harbin: Harbin Engineering University, 2016 (in Chinese).
    [4]
    赖华威. 考虑水下机器人对流场影响的螺旋桨水动力性能研究[D]. 广州: 华南理工大学, 2009.

    LAI H W. Hydrodynamic performance of propeller considering the influence of underwater robot on flow field[D]. Guangzhou: South China University of Technology, 2009 (in Chinese).
    [5]
    CHEN B, STERN F. Computational fluid dynamics of four-quadrant marine-propulsor flow[J]. Journal of Ship Research, 1999, 43(4): 218–228. doi: 10.5957/jsr.1999.43.4.218
    [6]
    CHEN H C, LEE S K. Time-domain simulation of four-quadrant propeller flows by a chimera moving grid approach[C]//Proceedings of the Civil Engineering in the Oceans VI. Baltimore, Maryland, USA: American Society of Civil Engineers, 2004.
    [7]
    LEE S K. CFD simulation for propeller four-quadrant flows[C]//2006 SNAME Propeller/Shafting 2006 conference. VA, USA: ABS Technical Papers, The Society of Naval Architects and Marine Engineers (SNAME), 2006.
    [8]
    肖冰, 范中洲, 石爱国, 等. 螺旋桨多种工况敞水性能数值预报[J]. 大连海事大学学报., 2010, 36(3): 7–10,16.

    XIAO B, FAN Z Z, SHI A G, et al. Numerical prediction of hydrodynamic performance of open-water propeller under multi-working conditions[J]. Journal of Dalian Maritime University, 2010, 36(3): 7–10,16 (in Chinese).
    [9]
    李理, 刘可, 李超, 等. 螺旋桨四象限水动力性能数值模拟及应用[J]. 舰船科学技术, 2012, 34(7): 8–14,39. doi: 10.3404/j.issn.1672-7649.2012.07.002

    LI L, LIU K, LI C, et al. The research on numerical simulation of propeller's hydrodynamic performance in four quadrants[J]. Ship Science and Technology, 2012, 34(7): 8–14,39 (in Chinese). doi: 10.3404/j.issn.1672-7649.2012.07.002
    [10]
    王贵彪, 谢永和, 许颂捷. 导管螺旋桨四象限水动力性能研究[J]. 船舶工程, 2015, 37(10): 26–28,53.

    WANG G B, XIE Y H, XU S J. Research on ducted propeller's hydrodynamic performance in four quadrants[J]. Ship Engineering, 2015, 37(10): 26–28,53 (in Chinese).
    [11]
    王国栋. 螺旋桨水动力、空泡和噪声性能预报方法研究[D]. 武汉: 华中科技大学, 2013.

    WANG G D. Investigation on the numerical simulation of propeller hydrodynamics, cavitation and noise[D]. Wuhan: Huazhong University of Science and Technology, 2013 (in Chinese).
    [12]
    杨琼方, 王永生, 张志宏. 侧斜与负载对螺旋桨无空化和空化水动力性能的影响[J]. 计算力学学报, 2012, 29(5): 765–771. doi: 10.7511/jslx20125021

    YANG Q F, WANG Y S, ZHANG Z H. Effects of skew and load on propeller non-cavitation and cavitation hydrodynamic performances[J]. Chinese Journal of Computational Mechanics, 2012, 29(5): 765–771 (in Chinese). doi: 10.7511/jslx20125021
    [13]
    谭廷寿. 非均匀流场中螺旋桨性能预报和理论设计研究[D]. 武汉: 武汉理工大学, 2003.

    TAN T S. Performance prediction and theoretical design research on propeller in non-uniform flow[D]. Wuhan: Wuhan University of Technology, 2003(in Chinese).
    [14]
    陈进, 邹早建. 紧急制动及紧急向前时螺旋桨绕流的大涡模拟[J]. 船舶力学, 2018, 22(3): 296–310. doi: 10.3969/j.issn.1007-7294.2018.03.005

    CHEN J, ZOU Z J. LES simulations of the flow around a propeller in crash back and crash ahead[J]. Journal of Ship Mechanics, 2018, 22(3): 296–310 (in Chinese). doi: 10.3969/j.issn.1007-7294.2018.03.005
    [15]
    何朋朋. 船用复合材料螺旋桨流固声耦合特性数值研究[D]. 武汉: 武汉理工大学, 2019.

    HE P P. Numerical research of fluid-structure-acoustics coupling characteristics of marine composite propellers [D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese).
  • ZG2288_en.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(5)

    Article Metrics

    Article Views(753) PDF Downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return