Volume 17 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
WANG R, XIONG Y. Propeller optimization design based on the adjoint method[J]. Chinese Journal of Ship Research, 2022, 17(1): 36–41 doi: 10.19693/j.issn.1673-3185.02131
Citation: WANG R, XIONG Y. Propeller optimization design based on the adjoint method[J]. Chinese Journal of Ship Research, 2022, 17(1): 36–41 doi: 10.19693/j.issn.1673-3185.02131

Propeller optimization design based on the adjoint method

doi: 10.19693/j.issn.1673-3185.02131
  • Received Date: 2020-10-01
  • Rev Recd Date: 2021-03-14
  • Available Online: 2022-02-22
  • Publish Date: 2022-03-02
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  In order to develop a highly efficient method for propeller design optimization, the adjoint method is studied based on surface panel method.  Methods  An adjoint equation is established under the conditions of zero normal velocity of blade and equal-pressure Kutta to obtain a formulae for solving sensitive derivative problem. A DTMB 4381 propeller is used as the research objective to calculate the sensitive derivatives of propeller performance to design parameters using the adjoint method and traditional method respectively for solving governing equation. Next, an analysis of senstive derivatives on a ship propeller design is carried out based on the adjoint method.The sensitive derivatives are then obtained and applied to optimize the geometric parameters of the propeller, achieving the optimal solutions which are compared with that by particle swarm optimization (PSO) algorithm of ISIGHT.  Results  The results indicate that the sensitive derivatives caluculated via the adjoint method are not only in good agreement with that by traditional method, but also offers much higher computation efficiency, generating optimal solutions of the propeller design superior to that by PSO algorithm with less time-consumption.  Conclusions  The research shows that the computation efficiency of the adjoint method is superior to traditional intelligent algorithms in multi-parameters optimization design of ship propellers.
  • loading
  • [1]
    GAGGERO S, TANI G, VILLA D, et al. Efficient and multi-objective cavitating propeller optimization: An application to a high-speed craft[J]. Applied Ocean Research, 2017, 64: 31–57. doi: 10.1016/j.apor.2017.01.018
    [2]
    邬伟, 熊鹰. 一种抗空化翼型修形设计方法[J]. 上海交通大学学报, 2013, 47(6): 878–883,888.

    WU W, XIONG Y. A reshaping method for anti-cavitating hydrofoil design[J]. Journal of Shanghai Jiao Tong University, 2013, 47(6): 878–883,888 (in Chinese).
    [3]
    KOYAMA K. Relation between the lifting surface theory and the lifting line theory in the design of an optimum screw propeller[J]. Journal of Marine Science and Technology, 2013, 18: 145–165. doi: 10.1007/s00773-012-0200-3
    [4]
    黄斌, 熊鹰, 王波. 基于粒子群算法的螺旋桨侧斜分布优化[J]. 中国舰船研究, 2016, 11(6): 83–89. doi: 10.3969/j.issn.1673-3185.2016.06.013

    HUANG B, XIONG Y, WANG B. Application of particle swarm optimization theory in skew distribution of propeller[J]. Chinese Journal of Ship Research, 2016, 11(6): 83–89 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.06.013
    [5]
    王超, 韩康, 汪春辉, 等. 冰区航行船舶推进器特殊性分析[J]. 中国舰船研究, 2019, 14(2): 1–7.

    WANG C, HAN K, WANG C H, et al. Analysis on the particularity of propulsor of ice-going ships[J]. Chinese Journal of Ship Research, 2019, 14(2): 1–7 (in Chinese).
    [6]
    LEE K J, HOSHINO T, LEE J H. A lifting surface optimization method for the design of marine propeller blades[J]. Ocean Engineering, 2014, 88: 472–479.
    [7]
    WANG C, YE L Y, CHANG X, et al. The study on optimization design of propeller pitch[J]. Journal of Coastal Research, 2015, 73(Supp1): 466–470.
    [8]
    宋召运, 刘波, 程昊, 等. 基于改进粒子群算法的串列叶型优化设计[J]. 推进技术, 2016, 37(8): 1469–1476.

    SONG Z Y, LIU B, CHENG H, et al. Optimization of tandem blade based on modified particle swarm algorithm[J]. Journal of Propulsion Technology, 2016, 37(8): 1469–1476 (in Chinese).
    [9]
    SIKARWAR N, MORRIS P J. The use of an adjoint method for optimization of blowing in a convergent-divergent nozzle[J]. International Journal of Aeroacoustics, 2015, 14(1/2): 327–351. doi: 10.1260/1475-472X.14.1-2.327
    [10]
    BIAVA M, WOODGATE M, BARAKOS G N. Fully implicit discrete-adjoint methods for rotorcraft applications[J]. AIAA Journal, 2016, 54(2): 735–749. doi: 10.2514/1.J054006
    [11]
    季路成, 李伟伟, 伊卫林. 伴随方法用于叶轮机优化设计的回顾与展望[J]. 航空发动机, 2011, 37(5): 53–57,62. doi: 10.3969/j.issn.1672-3147.2011.05.015

    JI L C, LI W W, YI W L. Retrospect and prospect for adjoint method applying to turbomachinery optimization design[J]. Aeroengine, 2011, 37(5): 53–57,62 (in Chinese). doi: 10.3969/j.issn.1672-3147.2011.05.015
    [12]
    PIRONNEAU O. On optimum design in fluid mechanics[J]. Journal of Fluid Mechanics, 1974, 64(1): 97–110. doi: 10.1017/S0022112074002023
    [13]
    JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233–260. doi: 10.1007/BF01061285
    [14]
    CHOI S, LEE K, POTSDAM M M, et al. Helicopter rotor design using a time-spectral and adjoint-based method[J]. Journal of Aircraft, 2014, 51(2): 412–423. doi: 10.2514/1.C031975
    [15]
    李伟伟, 季路成, 伊卫林. 基于伴随方法的多级叶轮机三维叶片优化设计[J]. 工程热物理学报, 2014, 35(11): 2164–2167.

    LI W W, JI L C, YI W L. Blade shape optimization of multistage turbomachinery by adjoint method[J]. Journal of Engineering Thermophysics, 2014, 35(11): 2164–2167 (in Chinese).
    [16]
    王睿, 熊鹰, 王展智. 适用于整体求解吊舱推进器的定常面元法[J]. 推进技术, 2016, 37(5): 992–1000.

    WANG R, XIONG Y, WANG Z Z. A steady surface panel method suitable for calculation of podded propulsor as a whole[J]. Journal of Propulsion Technology, 2016, 37(5): 992–1000 (in Chinese).
    [17]
    WANG R, XIONG Y, WANG Z Z. A surface panel method for the analysis of hybrid contra-rotating shaft pod propulsor[J]. Ocean Engineering, 2017, 140: 97–104. doi: 10.1016/j.oceaneng.2017.05.022
    [18]
    王波. 船用螺旋桨参数化分析及优化设计研究[D]. 武汉: 海军工程大学, 2013.

    WANG B. Research on optimization design and parameters analysis of marine propeller[D]. Wuhan: Naval University of Engineering, 2013 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article Views(668) PDF Downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return