Volume 17 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
JI G, SU X L, LI , et al. Leakage rate index allocation of reactor safety vessel for floating nuclear power plants[J]. Chinese Journal of Ship Research, 2022, 17(1): 141–146 doi: 10.19693/j.issn.1673-3185.02194
Citation: JI G, SU X L, LI , et al. Leakage rate index allocation of reactor safety vessel for floating nuclear power plants[J]. Chinese Journal of Ship Research, 2022, 17(1): 141–146 doi: 10.19693/j.issn.1673-3185.02194

Leakage rate index allocation of reactor safety vessel for floating nuclear power plants

doi: 10.19693/j.issn.1673-3185.02194
  • Received Date: 2020-11-19
  • Rev Recd Date: 2021-03-23
  • Available Online: 2022-02-17
  • Publish Date: 2022-03-02
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objective  The purpose of this paper is to clarify the overall and local leakage rates of marine reactor safety vessel, establish the acceptance criteria of sealing test for reactor safety vessel and analyze the concentration of airborne radioactive material in surrounding cabins.  Methods  Based on the sealing test standard of land-based nuclear power plants, a study on index allocation and calculation of leakage rate as well as feasibility analysis of floating nuclear power plants (FNPP) are carried out in accordance with the general procedure of "standard analysis-indices proposing-indices verification".  Results  The results show that the proposed overall leakage rate of the reactor safety vessel of FNPP is about 3‰/24 h, and the leakage rate distribution of the penetrators of B & C types account for 10% and 50% of the overall leakage rate respectively under design basis accident conditions. During the sealing test, the overall leakage rate of the reactor safety vessel should be considered at 25% of the design margin.  Conclusion  The calculated leakage rate of FNPP meet the requirements of the index and the design margin is desirable, which is of great reference value for the establishment of containment sealing test acceptance criteria.
  • loading
  • [1]
    HAD 102/06—1990. 核电厂反应堆安全壳系统的设计[S]. 北京: 国家核安全局, 1990.

    HAD 102/06—1990. Design of containment systems for nuclear power plants[S]. BeiJing: NNSA, 1990(in Chinese).
    [2]
    黄志鹏. 浅谈核电站安全壳结构设计[J]. 科学技术创新, 2018(21): 179–180. doi: 10.3969/j.issn.1673-1328.2018.21.110

    HUANG Z P. Structural design of containment vessel in nuclear power plant[J]. Science and Technology Innovation, 2018(21): 179–180 (in Chinese). doi: 10.3969/j.issn.1673-1328.2018.21.110
    [3]
    谭美, 李鹏凡, 郭健, 等. 海洋环境条件下浮动堆安全壳设计[J]. 中国舰船研究, 2020, 15(1): 107–112, 144. doi: 10.19693/j.issn.1673-3185.01689

    TAN M, LI P F, GUO J, et al. Design of floating nuclear power plant containment under marine environment conditions[J]. Chinese Journal of Ship Research, 2020, 15(1): 107–112, 144 (in Chinese). doi: 10.19693/j.issn.1673-3185.01689
    [4]
    赵旭, 晏桂珍, 丁海明. AP1000钢制安全壳结构整体性试验介绍[J]. 核科学与工程, 2018, 38(2): 204–210. doi: 10.3969/j.issn.0258-0918.2018.02.004

    ZHAO X, YAN G Z, DING H M. Introduction to structural integrity test of AP1000 steel containment vessel[J]. Nuclear Science and Engineering, 2018, 38(2): 204–210 (in Chinese). doi: 10.3969/j.issn.0258-0918.2018.02.004
    [5]
    章春伟, 杨永灯, 乔宇, 等. 安全壳泄漏率在线监测系统原理及数据分析[J]. 核安全, 2014, 13(2): 55–60. doi: 10.3969/j.issn.1672-5360.2014.02.011

    ZHANG C W, YANG Y D, QIAO Y, et al. The principle and data analysis of online monitoring system of containment leak rate[J]. Nuclear Safety, 2014, 13(2): 55–60 (in Chinese). doi: 10.3969/j.issn.1672-5360.2014.02.011
    [6]
    褚英杰, 欧阳钦. 安全壳整体泄漏率计算方法的比较分析[J]. 核动力工程, 2010, 31(6): 33–37.

    CHU Y J, OUYANG Q. Comparison and analysis of methods for containment leakage rate calculation[J]. Nuclear Power Engineering, 2010, 31(6): 33–37 (in Chinese).
    [7]
    IMO Res. A. 491(XⅡ)-1981. 核商船安全规则[S].伦敦: 国际海事组织, 1981.

    IMO Res. A. 491(X II)-1981. Safety rules for nuclear merchant ships [S]. London: IMO, 1981.
    [8]
    陈艳霞, 谭美, 陈强, 等. 基于安全围壁的浮动堆旁路泄漏设计研究[J]. 核动力工程, 2020, 41(3): 133–136.

    CHEN Y X, TAN M, CHEN Q, et al. Evaluation of bypass leakage design idea for floating nuclear power plants based on safety enclosure[J]. Nuclear Power Engineering, 2020, 41(3): 133–136 (in Chinese).
    [9]
    王军龙, 刘嘉嘉, 刘聪, 等. 浮动式核电厂烟羽应急计划区划分[J]. 原子能科学技术, 2017, 51(4): 671–675. doi: 10.7538/yzk.2017.51.04.0671

    WANG J L, LIU J J, LIU C, et al. Definition of plume emergency planning zone for floating nuclear power plant[J]. Atomic Energy Science and Technology, 2017, 51(4): 671–675 (in Chinese). doi: 10.7538/yzk.2017.51.04.0671
    [10]
    NB/T 20185—2012. 压水堆核电厂厂内辐射分区设计准则[S].北京: 国家能源局, 2012.

    NB/T 20185—2012. Design criteria for radiation zoning of PWR nuclear power plant[S]. BeiJing: NEA, 2012.
    [11]
    NB/T 20018-2010.压水堆核电厂安全壳密封性试验[S]. 北京: 中国核工业集团公司, 2010.

    NB/T 20018-2010. Containment Test of Pressurized Water Reactor Nuclear Power Plant[S]. BeiJing: CNNC,2010.
    [12]
    RCC-G-1986. 核电站土建设计建造规则 [S]. 1986.

    RCC-G-1986. Civil design and construction code[S]. 1986. (in Chinese)
    [13]
    国家技术监督局. 2×600MW压水堆核电厂核岛系统设计建造规范: GB/T 15761-1995[S]. 北京: 中国标准出版社, 1996.

    The State Bureau of Quality and Technical Supervision. Design and construction rules for nuclear island systems of 2×600MW PWR nuclear power plants: GB/T 15761—1995[S]. Beijing: China Standard Press, 1996 (in Chinese).
    [14]
    周新蓉, 吴晨晖, 李海东. 海洋环境下浮动堆设备闸门密封性能分析[J]. 压力容器, 2020, 37(2): 51–55. doi: 10.3969/j.issn.1001-4837.2020.02.008

    ZHOU X R, WU C H, LI H D. Sealing analysis of equipment gate valve under marine environment[J]. Pressure Vessel Technology, 2020, 37(2): 51–55 (in Chinese). doi: 10.3969/j.issn.1001-4837.2020.02.008
    [15]
    GB/T 13538-2017. 核电厂安全壳电气贯穿件[S]. 北京: 中国核工业集团公司, 2017.

    GB/T 13538-2017. Nuclear Power Plant Containment Electrical Penetrations[S].BeiJing: CNNC,2017.
    [16]
    EJ/T 331-92.失水事故后流体系统的安全壳隔离装置[S].北京: 中国核工业集团公司, 1992.

    EJ/T 331-92. Containment Isolation Device For Fluid System After Loss of Water Accident[S]. BeiJing: CNNC,1992.
    [17]
    闫治平, 黄淑英. 漏率与压力关系的研究[J]. 中国空间科学技术, 1999(2): 42–46.

    YAN Z P, HUANG S Y. A study of relation to leak rate and pressure[J]. Chinese Space Science and Technology, 1999(2): 42–46 (in Chinese).
    [18]
    刘吉, 党杰, 陈镇, 等. 模拟刚性正压漏孔的泄漏率与压力关系研究[J]. 真空科学与技术学报, 2017, 37(12): 1141–1145.

    LIU J, DANG J, CHEN Z, et al. Impact of pressure difference on leakage rate from rigid positive standard leak: a theoretical and experimental study[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(12): 1141–1145 (in Chinese).
    [19]
    高忠勇, 戴长山, 吴文宏. 秦山核电厂安全壳系统B、C类密封性试验[J]. 核科学与工程, 1992, 12(3): 200–205.

    GAO Z Y, DAI C S, WU W H. Primary reactor containment leakage tests (B & C types) for Qinshan nuclear power plant[J]. Chinese Journal of Nuclear Science and Engineering, 1992, 12(3): 200–205 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(7)

    Article Metrics

    Article Views(585) PDF Downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return