Volume 17 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
CHEN S, WANG N, CHEN T K, et al. Confidence check-adaptive federated Kalman filter and its application in underwater vehicle integrated navigation[J]. Chinese Journal of Ship Research, 2022, 17(1): 203–211, 220 doi: 10.19693/j.issn.1673-3185.02216
Citation: CHEN S, WANG N, CHEN T K, et al. Confidence check-adaptive federated Kalman filter and its application in underwater vehicle integrated navigation[J]. Chinese Journal of Ship Research, 2022, 17(1): 203–211, 220 doi: 10.19693/j.issn.1673-3185.02216

Confidence check-adaptive federated Kalman filter and its application in underwater vehicle integrated navigation

doi: 10.19693/j.issn.1673-3185.02216
  • Received Date: 2020-12-07
  • Rev Recd Date: 2021-03-08
  • Available Online: 2022-02-26
  • Publish Date: 2022-03-02
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  In order to solve the problem of the reduced accuracy of integrated navigation when a carrier is disturbed, a confidence check-adaptive federated Kalman filter (CC-AFKF) framework is proposed.  Methods  First, the electronic compass (EC), global positioning system (GPS) and inertial navigation system (INS) are combined. Second, a confidence check model is constructed to effectively filter out low-confidence measurements in the INS/GPS and INS/EC subsystems, and ensure the accuracy of the measured value. Finally, an adaptive adjustment factor strategy for the INS/GPS and INS/EC systems is proposed to effectively adjust system noise covariance during the update process.  Results  A large number of related tests are carried out through an underwater vehicle equipped with INS/GPS/EC integrated navigation systems. The test results show that the CC-AFKF algorithm proposed in this paper can improve the integrated accuracy of position and velocity by at least 29% compared with typical KF and FKF algorithms.  Conclusions  The results of this study can provide corresponding directions and ideas for research on loosely coupled integrated navigation systems.
  • loading
  • [1]
    GREWAL M S, ANDREWS A P, BARTONE C G. Global navigation satellite systems, inertial navigation, and integration[M]. Hoboken: John Wiley & Sons, 2006: 23-24.
    [2]
    YANG Y X, GAO W G. An optimal adaptive Kalman filter[J]. Journal of Geodesy, 2006, 80(4): 177–183. doi: 10.1007/s00190-006-0041-0
    [3]
    周先林, 张慧君, 和涛, 等. GPS/INS松耦合组合导航的自适应卡尔曼滤波算法研究[J]. 时间频率学报, 2020, 43(3): 222–230.

    ZHOU X L, ZHANG H J, HE T, et al. Research on adaptive Kalman filter algorithm for GPS/INS loosely coupled integrated navigation[J]. Journal of Time and Frequency, 2020, 43(3): 222–230 (in Chinese).
    [4]
    吕建新, 周翟和, 伏家杰, 等. 自适应联邦卡尔曼滤波在机器人组合导航系统中的应用研究[J]. 测控技术, 2017, 36(6): 15–19. doi: 10.3969/j.issn.1000-8829.2017.06.004

    LV J X, ZHOU Z H, FU J J, et al. Application of adaptive federated Kalman filter in robot integrated navigation system[J]. Measurement & Control Technology, 2017, 36(6): 15–19 (in Chinese). doi: 10.3969/j.issn.1000-8829.2017.06.004
    [5]
    LI Z K, WANG J, GAO J X. An enhanced GPS/INS integrated navigation system with GPS observation expansion[J]. The Journal of Navigation, 2016, 69(5): 1041–1060. doi: 10.1017/S0373463315001083
    [6]
    JIANG W, LI Y, RIZOS C. Optimal data fusion algorithm for navigation using triple integration of PPP-GNSS, INS, and terrestrial ranging system[J]. IEEE Sensors Journal, 2015, 15(10): 5634–5644. doi: 10.1109/JSEN.2015.2447015
    [7]
    MA X S, ZHANG T W, LIU X X. Application of adaptive federated filter based on innovation covariance in underwater integrated navigation system[C]//Proceedings of the 2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). Hangzhou, China: IEEE, 2018: 209-213.
    [8]
    LIU X H, LIU X X, YANG Y, et al. An improved Federated Filter navigation algorithm for UAV[C]//Proceedings of the 2019 Chinese Automation Congress (CAC). Hangzhou, China: IEEE, 2019: 1621-1625.
    [9]
    MALLESWARAN M, VAIDEHI V, MOHANKUMAR M. A hybrid approach for GPS/INS integration using Kalman filter and IDNN[C]//Proceedings of the 3rd International Conference on Advanced Computing. Chennai, India: IEEE, 2011: 378-383.
    [10]
    SUNG K, KIM H. Simplified KF-based energy-efficient vehicle positioning for smartphones[J]. Journal of Communications and Networks, 2020, 22(2): 93–107. doi: 10.1109/JCN.2020.000003
    [11]
    ABOSEKEEN A, NOURELDIN A, KORENBERG M J. Improving the RISS/GNSS land-vehicles integrated navigation system using magnetic azimuth updates[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1250–1263. doi: 10.1109/TITS.2019.2905871
    [12]
    GARCÍA-LIGERO M J, HERMOSO-CARAZO A, LINARES-PÉREZ J. Distributed fusion estimation in networked systems with uncertain observations and Markovian random delays[J]. Signal Processing, 2015, 106: 114–122. doi: 10.1016/j.sigpro.2014.07.003
    [13]
    崔平远, 黄晓瑞. 基于联合卡尔曼滤波的多传感器信息融合算法及其应用[J]. 电机与控制学报, 2001, 5(3): 204–207. doi: 10.3969/j.issn.1007-449X.2001.03.017

    CUI P Y, HUANG X R. Multi-sensor information fusion algorithm based on federal Kalman filter and its application[J]. Electric Machines and Control, 2001, 5(3): 204–207 (in Chinese). doi: 10.3969/j.issn.1007-449X.2001.03.017
    [14]
    ZHANG C, LI T S, GUO C. GPS/INS integration based on adaptive interacting multiple model[J]. The Journal of Engineering, 2019, 2019(15): 561–565. doi: 10.1049/joe.2018.9381
    [15]
    严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019: 76–80.

    YAN G M, WENG J. Strapdown inertial navigation algorithm and integrated navigation principle[M]. Xi'an: Northwestern Polytechnical University Press, 2019: 76–80. (in Chinese)
    [16]
    SHEN K, WANG M L, FU M Y, et al. Observability analysis and adaptive information fusion for integrated navigation of unmanned ground vehicles[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7659–7668.
    [17]
    XIONG H L, MAI Z Z, TANG J, et al. Robust GPS/INS/DVL navigation and positioning method using adaptive federated strong tracking filter based on weighted least square principle[J]. IEEE Access, 2019, 7: 26168–26178. doi: 10.1109/ACCESS.2019.2897222
    [18]
    MIAO Z B, ZHANG H T, ZHANG J Z. An accurate and generic testing approach to vehicle stability parameters based on GPS and INS[J]. Sensors, 2015, 15(12): 30469–30486. doi: 10.3390/s151229812
    [19]
    BRACE P, GOLDHAHN R, FERRI G, et al. Distributed information fusion in multistatic sensor networks for underwater surveillance[J]. IEEE Sensors Journal, 2016, 16(11): 4003–4014. doi: 10.1109/JSEN.2015.2431818
    [20]
    翟云峰, 王冠学, 徐国华, 等. 大尺度欠驱动高速AUV导航系统研制[J]. 中国舰船研究, 2018, 13(6): 78–86,93.

    ZHAI Y F, WANG G X, XU G H, et al. Development of navigation system for large-scale and high-speed underactuated AUV[J]. Chinese Journal of Ship Research, 2018, 13(6): 78–86,93 (in Chinese).
  • ZG2216_en.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article Views(657) PDF Downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return