Volume 17 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
QIU L, ZHENG C S. Numerical simulation of dynamic performance of trans-media unmanned vehicle during vertical take-off from water[J]. Chinese Journal of Ship Research, 2022, 17(1): 51–59 doi: 10.19693/j.issn.1673-3185.02229
Citation: QIU L, ZHENG C S. Numerical simulation of dynamic performance of trans-media unmanned vehicle during vertical take-off from water[J]. Chinese Journal of Ship Research, 2022, 17(1): 51–59 doi: 10.19693/j.issn.1673-3185.02229

Numerical simulation of dynamic performance of trans-media unmanned vehicle during vertical take-off from water

doi: 10.19693/j.issn.1673-3185.02229
  • Received Date: 2020-12-17
  • Rev Recd Date: 2021-04-26
  • Available Online: 2021-07-08
  • Publish Date: 2022-03-02
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  This paper aims to study the kinetic and dynamic characteristics of an trans-media unmanned vehicle during vertical take-off from water.  Methods  Its dynamic performance during the trans-media process from water to air is numerically simulated on the basis of the viscous computational fluid dynamics (CFD) approach combined with the overset grid technique, multiple degrees of freedom and dynamic fluid body interaction (DFBI) motion model.  Results  The results show that in order to pull the vehicle up, the air propeller rotation speed should be higher than the speed at the same pull force provided by a single propeller. As the main movement of the vehicle is vertically upward, the coupling of the air propeller downwash flow velocity and the fuselage of the vehicle leads to the "quick bowing" phenomenon.  Conclusions  To ensure smooth take-off, a manual or automatic control program should be added to adjust the tilt angle of the thrusters in real time during the take-off process. This study provides a powerful evaluation method for the optimal design and control of trans-media unmanned vehicle in the future.
  • loading
  • [1]
    张军, 高德宝, 曹耀初, 等. 水中−空中跨介质航行器研究进展[C]//水下发射学组2018年学术会议论文集. 舟山, 2018: 231−238.

    ZHANG J, GAO D B, CAO Y C, et al. Study on development of water-air trans-media vehicle[C]//Proceedings of CSNAME Conference on Underwater Launch 2018. Zhoushan, China, 2018: 231−238 (in Chinese).
    吝科, 冯金富, 张晓强, 等. 升力型潜水飞行器水空动力学特性研究[J]. 舰船科学技术, 2014, 36(9): 94–97, 105. doi: 10.3404/j.issn.1672-7649.2014.09.019

    LIN K, FENG J F, ZHANG X Q, et al. Research on the aerodynamic/hydrodynamic characteristic of lifting submersible aircraft[J]. Ship Science and Technology, 2014, 36(9): 94–97, 105 (in Chinese). doi: 10.3404/j.issn.1672-7649.2014.09.019
    齐赞强. 一种新构型倾转四旋翼无人机的气动特性分析[D]. 南京: 南京航空航天大学, 2016.

    QI Z Q. Aerodynamic characteristics analysis of a tilt-quadrotor with new configuration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese).
    吴江, 刘远强, 高峰, 等. 一种倾转旋翼无人机螺旋桨的设计及性能分析[J]. 沈阳航空航天大学学报, 2018, 35(3): 27–31, 46. doi: 10.3969/j.issn.2095-1248.2018.03.004

    WU J, LIU Y Q, GAO F, et al. Design and performance analysis of propeller for a tilt rotor UAV[J]. Journal of Shenyang Aerospace University, 2018, 35(3): 27–31, 46 (in Chinese). doi: 10.3969/j.issn.2095-1248.2018.03.004
    邓见, 金楠, 周意琦, 等. 仿飞鱼跨介质无人平台的探索研究[J]. 水动力学研究与进展(A辑), 2020, 35(1): 55–60.

    DENG J, JIN N, ZHOU Y Q, et al. Preliminary study on aerial-aquatic unmanned vehicle mimicking flying fish[J]. Chinese Journal of Hydrodynamics (Ser.A), 2020, 35(1): 55–60 (in Chinese).
    廖保全, 冯金富, 齐铎, 等. 一种可变形跨介质航行器气动/水动特性分析[J]. 飞行力学, 2016, 34(3): 44–47, 57.

    LIAO B Q, FENG J F, QI D, et al. Aerodynamic and hydrodynamic characteristics analysis of morphing submersible aerial vehicle[J]. Flight Dynamics, 2016, 34(3): 44–47, 57 (in Chinese).
    魏洪亮, 陆宏志, 赵静, 等. 水下发射航行体跨介质动态载荷预报研究[J]. 导弹与航天运载技术, 2016(2): 77–80.

    WEI H L, LU H Z, ZHAO J, et al. Study on dynamic load prediction of trans-media underwater launching vehicle[J]. Missiles and Space Vehicles, 2016(2): 77–80 (in Chinese).
    谭骏怡, 胡俊华, 陈国明, 等. 水空跨介质航行器斜出水过程数值仿真[J]. 中国舰船研究, 2019, 14(6): 104–121.

    TAN J Y, HU J H, CHEN G M, et al. Numerical simulation of oblique water-exit process of trans-media aerial underwater vehicle[J]. Chinese Journal of Ship Research, 2019, 14(6): 104–121 (in Chinese).
    杜特专, 黄仁芳, 王畅. 跨介质航行器弹性舵翼空化流固耦合仿真分析[J]. 宇航总体技术, 2020, 4(3): 28–33.

    DU T Z, HUANG R F, WANG C. Numerical investigations into the cavitation fluid-solid coupling for elastic rudder wings of aerial-aquatic vehicle[J]. Astronautical Systems Engineering Technology, 2020, 4(3): 28–33 (in Chinese).
    贾力平, 康顺. 基于FINE/Marine的跨介质航行器数值模拟[J]. 计算机辅助工程, 2011, 20(3): 97–101. doi: 10.3969/j.issn.1006-0871.2011.03.020

    JIA L P, KANG S. Numerical simulation on cross-media crafts based on FINE/Marine software[J]. Computer Aided Engineering, 2011, 20(3): 97–101 (in Chinese). doi: 10.3969/j.issn.1006-0871.2011.03.020
    谭骏怡, 胡俊华, 颜奇民, 等. 共性半环翼跨介质航行器变体气动特性研究[J]. 飞行力学, 2020, 38(1): 1–7.

    TAN J Y, HU J H, YAN Q M, et al. Study on aerodynamic characteristics of conformal semi-ring wing trans-medium vehicle variants[J]. Flight Dynamics, 2020, 38(1): 1–7 (in Chinese).
    MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598–1605. doi: 10.2514/3.12149
    OHMORI T. Finite-volume simulation of flows about a ship in maneuvering motion[J]. Journal of Marine Science and Technology, 1998, 3(2): 82–93. doi: 10.1007/BF02492563
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(27)  / Tables(2)

    Article Metrics

    Article Views(1135) PDF Downloads(106) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint