Citation: | LIAN Y S, ZHANG B, ZHENG J H, et al. Effects of mooring systems on dynamic response of wave energy converter[J]. Chinese Journal of Ship Research, 2022, 17(1): 80–90, 116 doi: 10.19693/j.issn.1673-3185.02223 |
[1] |
NEARY V S, LAWSON M, PREVISIC M, et al. Methodology for design and economic analysis of marine energy conversion (MEC) technologies: No. SAND2014-3561C[R]. Albuquerque, NM, USA: Sandia National Laboratories, 2014.
|
[2] |
WELLER S D, JOHANNING L, DAVIES P, et al. Synthetic mooring ropes for marine renewable energy applications[J]. Renewable Energy, 2015, 83: 1268–1278. doi: 10.1016/j.renene.2015.03.058
|
[3] |
JOHANNING L, SMITH G H, WOLFRAM J. Mooring design approach for wave energy converters[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 2006, 220(4): 159–174. doi: 10.1243/14750902JEME54
|
[4] |
JOHANNING L, SMITH G H, WOLFRAM J. Measurements of static and dynamic mooring line damping and their importance for floating WEC devices[J]. Ocean Engineering, 2007, 34(14/15): 1918–1934. doi: 10.1016/j.oceaneng.2007.04.002
|
[5] |
FITZGERALD J, BERGDAHL L. Including moorings in the assessment of a generic offshore wave energy converter: a frequency domain approach[J]. Marine Structures, 2008, 21(1): 23–46. doi: 10.1016/j.marstruc.2007.09.004
|
[6] |
CERVEIRA F, FONSECA N, PASCOAL R. Mooring system influence on the efficiency of wave energy converters[J]. International Journal of Marine Energy, 2013, 16(3/4): 65–81. doi: 10.1016/j.ijome.2013.11.006
|
[7] |
ZANUTTIGH B, ANGELELLI E, KOFOED J P. Effects of mooring systems on the performance of a wave activated body energy converter[J]. Renewable Energy, 2013, 57: 422–431. doi: 10.1016/j.renene.2013.02.006
|
[8] |
BOSMA B, SHENG W, THIEBAUT F. Performance assessment of a floating power system for the galway bay wave energy test site[C]//International Conference on Ocean Energy (ICOE). Halifax, NS, Canada: International Energy Agency (IEA) Press, 2014: 1–10.
|
[9] |
GULLAKSEN J. Wave energy converter (WEC)-formulation of numerical method to predict fluid-structure interaction and wave energy potential[C]//Paper presented at the Offshore Technology Conference. Houston, Texas: Offshore Technology Conference, 2014.
|
[10] |
CASAUBIEILH P, THIEBAUT F, BOSMA B, et al. Performance improvements of mooring systems for wave energy converters[C]//1st International Conference on Renewable Energies Offshore. Lisbon, Portugal: CRC Press, 2014: 24–26.
|
[11] |
HARNOIS V, WELLER S D, JOHANNING L, et al. Numerical model validation for mooring systems: method and application for wave energy converters[J]. Renewable Energy, 2015, 75: 869–887. doi: 10.1016/j.renene.2014.10.063
|
[12] |
FLORY J F, BANFIELD S J, RIDGE I M L, et al. Mooring systems for marine energy converters[C]//Proceeding of OCEANS 2016 MTS/IEEE Monterey. Monterey, CA, USA: IEEE, 2016: 1–13.
|
[13] |
PAREDES G M, PALM J, ESKILSSON C, et al. Experimental investigation of mooring configurations for wave energy converters[J]. International Journal of Marine Energy, 2016, 19(15): 56–67. doi: 10.1016/j.ijome.2016.04.009
|
[14] |
PALM J, ESKILSSON C, PAREDES G M, et al. Coupled mooring analysis for floating wave energy converters using CFD: formulation and validation[J]. International Journal of Marine Energy, 2016, 16: 83–99. doi: 10.1016/j.ijome.2016.05.003
|
[15] |
SHI H D, CAO F F, LIU Z, et al. Theoretical study on the power take-off estimation of heaving buoy wave energy converter[J]. Renewable Energy, 2016, 86: 441–448. doi: 10.1016/j.renene.2015.08.027
|
[16] |
FOLLEY M. Numerical modelling of wave energy converters: state-of-the-art techniques for single devices and arrays[M]. Amsterdam: Academic Press, 2016.
|
[17] |
DAVIDSON J, RINGWOOD J V. Mathematical modelling of mooring systems for wave energy converters—a review[J]. Energies, 2017, 10(5): 666. doi: 10.3390/en10050666
|
[18] |
SERGIIENKO N Y, RAFIEE A, CAZZOLATO B S, et al. Feasibility study of the three-tether axisymmetric wave energy converter[J]. Ocean Engineering, 2018, 150: 221–233. doi: 10.1016/j.oceaneng.2017.12.055
|
[19] |
BARRERA C, GUANCHE R, LOSADA I J. Experimental modelling of mooring systems for floating marine energy concepts[J]. Marine Structures, 2019, 63: 153–180. doi: 10.1016/j.marstruc.2018.08.003
|
[20] |
WEC-Sim manual[EB/OL]. [2020-12-14]. https://wec-sim.github.io/WEC-Sim/.
|
[21] |
YU Y H, LAWSON M, RUEHL K, et al. Development and demonstration of the WEC-Sim wave energy converter simulation tool[C]//Proceedings of the 2nd Marine Energy Technology Symposium. Seattle, WA: METS, 2014: 1–8.
|
[22] |
YU Y H, LI Y. Reynolds-Averaged Navier–Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system[J]. Computers & Fluids, 2013, 73: 104–114.
|
[23] |
YU Y H, TOM N, JENNE D. Numerical analysis on hydraulic power take-off for wave energy converter and power smoothing methods[C]//ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid, Spain: ASME, 2018.
|
[24] |
RUEHL K, MICHELEN C, KANNER S, et al. Preliminary verification and validation of WEC-sim, an open-source wave energy converter design tool[C]//ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, USA: ASME, 2014.
|
[25] |
RUEHL K, MICHELEN C, YU Y H, et al. Update on WEC-Sim validation testing and code development [C]// Proposed for Presentation at the Marine Energy Technology Symposium. Albuquerque, NM: Sandia National Lab. , 2016.
|
[26] |
RUEHL K, MICHELEN C, BOSMA B, et al. WEC-Sim phase 1 validation testing: numerical modeling of experiments[C]//ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: ASME, 2016.
|
[27] |
LAWSON M J, YU Y H, NELESSEN A, et al. Implementing nonlinear buoyancy and excitation forces in the WEC-Sim wave energy converter modeling tool [C]// ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, CA: ASME, 2014.
|
[28] |
LAWSON M, GARZON B B, WENDT F, et al. COER hydrodynamic modeling competition: modeling the dynamic response of a floating body using the WEC-Sim and FAST simulation tools[C]//ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John's, Newfoundland, Canada: ASME, 2015.
|
[29] |
LAWSON M, YU Y H, RUEHL K, et al. Improving and Validating the WEC-Sim wave energy converter code[C]//Proceedings of the 3rd Marine Energy Technology Symposium, DC. Albuquerque, NM: Sandia National Lab. , 2015.
|
[30] |
TOM N, LAWSON M, YU Y H. Demonstration of the recent additions in modeling capabilities for the WEC-sim wave energy converter design tool[C]//ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John's, Newfoundland, Canada: ASME, 2015.
|
[31] |
TOM N, LAWSON M J, YU Y H. Recent additions in the modeling capabilities of an open-source wave energy converter design tool[C]//25th International Ocean and Polar Engineering. Kona, HI, USA: ISOPE Press, 2015: 1–8.
|
[32] |
BOSMA B, LEWIS T, BREKKEN T, et al. Wave tank testing and model validation of an autonomous wave energy converter[J]. Energies, 2015, 8(8): 8857–8872. doi: 10.3390/en8088857
|
[33] |
BOSMA B, SIMMONS A, LOMONACO P, et al. wec-sim phase 1 validation testing: experimental setup and initial results[C]//ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: ASME, 2016.
|
[34] |
SO R, SIMMONS A, BREKKEN T, et al. Development of PTO-Sim: a power performance module for the open-source wave energy converter code WEC-Sim[C]//Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John's, Newfoundland, Canada: ASME, 2015.
|
[35] |
SO R, MICHELEN C, BOSMA B, et al. Statistical analysis of a 1:7 scale field test wave energy converter using WEC-sim[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1118–1126. doi: 10.1109/TSTE.2017.2656863
|
[36] |
YIM S C, ADAMI N, BOSMA B, et al. A preliminary study on the modeling and analysis of nonlinear effects of ocean waves and power-take-off control on wave energy conversion system dynamics[C]//ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Glasgow, Scotland, UK: ASME, 2019.
|
[37] |
HALL M, GOUPEE A. Validation of a lumped-mass mooring line model with deepcwind semisubmersible model test data[J]. Ocean Engineering, 2015, 104: 590–603. doi: 10.1016/j.oceaneng.2015.05.035
|
[38] |
SIRNIVAS S, YU Y H, HALL M, et al. Coupled mooring analyses for the WEC-sim wave energy converter design tool[C]//ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: ASME, 2016.
|
[39] |
李焱, 唐友刚, 赵志娟, 等. 新型多筒式FDPSO概念设计及其系泊系统分析[J]. 中国舰船研究, 2013, 8(5): 97–103. doi: 10.3969/j.issn.1673-3185.2013.05.017
LI Y, TANG Y G, ZHAO Z J, et al. Concept design and analysis of the mooring system for the new type of multi-tubular FDPSO[J]. Chinese Journal of Ship Research, 2013, 8(5): 97–103 (in Chinese). doi: 10.3969/j.issn.1673-3185.2013.05.017
|
[40] |
LIAN Y S, LIU H X, HUANG W, et al. A creep-rupture model of synthetic fiber ropes for deepwater moorings based on thermodynamics[J]. Applied Ocean Research, 2015, 52: 234–244. doi: 10.1016/j.apor.2015.06.009
|
[41] |
LIAN Y S, ZHENG J H, LIU H X, et al. A study of the creep-rupture behavior of HMPE ropes using viscoelastic-viscoplastic-viscodamage modelling[J]. Ocean Engineering, 2018, 162: 43–54. doi: 10.1016/j.oceaneng.2018.05.003
|
[42] |
LIAN Y S, ZHENG J H, LIU H X. An investigation on creep and creep-rupture behaviors of HMPE ropes[J]. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140(2): 021401. doi: 10.1115/1.4038345
|
[43] |
LIAN Y S, LIU H X, ZHANG Y M, et al. An experimental investigation on fatigue behaviors of HMPE ropes[J]. Ocean Engineering, 2017, 139: 237–249. doi: 10.1016/j.oceaneng.2017.05.007
|
[44] |
LIAN Y S, LIU H X, LI L N, et al. An experimental investigation on the bedding-in behavior of synthetic fiber ropes[J]. Ocean Engineering, 2018, 160: 368–381. doi: 10.1016/j.oceaneng.2018.04.071
|
[45] |
LIU H X, HUANG W, LIAN Y S, et al. An experimental investigation on nonlinear behaviors of synthetic fiber ropes for deepwater moorings under cyclic loading[J]. Applied Ocean Research, 2014, 45: 22–32. doi: 10.1016/j.apor.2013.12.003
|
[46] |
LIU H X, LIAN Y S, LI L N, et al. Experimental investigation on dynamic stiffness of damaged synthetic fiber ropes for deepwater moorings[J]. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137(6): 061401. doi: 10.1115/1.4031392
|
[47] |
连宇顺, 刘海笑. 海洋系泊工程中合成纤维系缆研究述评[J]. 海洋工程, 2019, 37(1): 142–154.
LIAN Y S, LIU H X. Review of synthetic fiber ropes for deepwater moorings[J]. The Ocean Engineering, 2019, 37(1): 142–154 (in Chinese).
|
[48] |
WELLER S D, DAVIES P, VICKERS A W, et al. Synthetic rope responses in the context of load history: operational performance[J]. Ocean Engineering, 2014, 83: 111–124. doi: 10.1016/j.oceaneng.2014.03.010
|
[49] |
LIAN Y S, LIU H X, YIM S C, et al. An investigation on internal damping behavior of fiber rope[J]. Ocean Engineering, 2019, 182: 512–526. doi: 10.1016/j.oceaneng.2019.04.087
|
[50] |
France Bureau Veritas (BV). Guidance notes certification of fibre ropes for deepwater offshore services[S]. Paris, France: Bureau Veritas Press, 2017.
|
[51] |
Orcina, Orcaflex documentation [EB/OL]. [2020-12-14]. https://www.orcina.com/webhelp/OrcaFlex/Default.htm.
|