Weizheng XU, Weiguo WU. Development of in-house high-resolution hydrocode for assessment of blast waves and its application[J]. Chinese Journal of Ship Research, 2017, 12(3): 64-74. doi: 10.3969/j.issn.1673-3185.2017.03.010
Citation: Weizheng XU, Weiguo WU. Development of in-house high-resolution hydrocode for assessment of blast waves and its application[J]. Chinese Journal of Ship Research, 2017, 12(3): 64-74. doi: 10.3969/j.issn.1673-3185.2017.03.010

Development of in-house high-resolution hydrocode for assessment of blast waves and its application

doi: 10.3969/j.issn.1673-3185.2017.03.010
  • Received Date: 2016-11-28
    Available Online: 2017-05-12
  • Publish Date: 2017-06-01
    © 2017 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • The propagation and evolution characteristics of blast waves in confined spaces are complicated due to the constraint of the surrounding walls, by which the enhanced reflected shock waves will cause more serious damage to the internal structures, facilities and personnel. In order to investigate the characteristics of explosions in confined spaces, an in-house high-resolution hydrocode was developed in this present work. The third-order WENO finite difference scheme (weighted essentially non-oscillation scheme) was implemented in the code to capture the shock waves generated by cylindrical explosives. The Sod shock tube problem, interacting blast wave problem and blast in air problem were simulated to validate the code. The validated code was then used to simulate the blast waves generated by condensed explosives in closed, vented and connected spaces. The propagation of blast waves and the characteristics of blast load were subsequently investigated. The developed code appears to accurately predict the process of explosions in confined spaces. This high-resolution hydrocode can be used to study the propagation paths of blast waves in complicated spaces and evaluate the internal blast load, which can provide reliable input for the design of explosion-resistant structures.
  • loading
  • [1]
    ESPARZA E D, BAKER W E, OLDHAM G A. Blast pressures inside and outside suppressive structures:ADA025504[R]. San Antonio, TX:Southwest Re-search Institute, 1975.
    KEENAN W A, TANCRETO J E. Blast environment from fully and partially vented explosions in cubicles:ADA019026[R].[S.l.]:Department of the Army Pica-tinny Arsenal, 1975.
    EDRI I, SAVIR Z, FELDGUN V R, et al. On blast pressure analysis due to a partially confined explosion:I. Experimental studies[J]. International Journal of Protective Structures, 2011, 2(1):1-20. doi: 10.1260/2041-4196.2.1.1
    WU C Q, LUKASZEWICZ M, SCHEBELLA K, et al. Experimental and numerical investigation of confined explosion in a blast chamber[J]. Journal of Loss Pre-vention in the Process Industries, 2013, 26(4):737-750. doi: 10.1016/j.jlp.2013.02.001
    胡洋, 朱建芳, 朱锴.长方体单腔室空腔环境内爆炸效应的实验研究[J].爆炸与冲击, 2016, 36(3):340-346. doi: 10.11883/1001-1455(2016)03-0340-07

    HU Y, ZHU J F, ZHU K. Experimental study on ex-plosion effect in a closed single rectangular cavity[J]. Explosion and Shock Waves, 2016, 36(3):340-346(in Chinese). doi: 10.11883/1001-1455(2016)03-0340-07
    侯海量, 朱锡, 李伟, 等.舱内爆炸冲击载荷特性实验研究[J].船舶力学, 2010, 14(8):901-907. http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201008011.htm

    HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded in-side ship cabin[J]. Journal of Ship Mechanics, 2010, 14(8):901-907(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201008011.htm
    孔祥韶, 吴卫国, 李俊, 等.角隅结构对舱内爆炸载荷影响的实验研究[J].中国造船, 2012, 53(3):40-50. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201203006.htm

    KONG X S, WU W G, LI J, et al. Experimental re-search of influence of corner structure on blast loading under inner explosion[J]. Shipbuilding of China, 2012, 53(3):40-50(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201203006.htm
    侯海量, 朱锡, 梅志远.舱内爆炸载荷及舱室板架结构的失效模式分析[J].爆炸与冲击, 2007, 27(2):151-158. doi: 10.11883/1001-1455(2007)02-0151-08

    HOU H L, ZHU X, MEI Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion[J]. Explosion and Shock Waves, 2007, 27(2):151-158(in Chinese). doi: 10.11883/1001-1455(2007)02-0151-08
    孔祥韶, 吴卫国, 李晓彬, 等.舰船舱室内部爆炸的数值模拟研究[J].中国舰船研究, 2009, 4(4):7-11. http://www.ship-research.com/CN/abstract/abstract551.shtml

    KONG X S, WU W G, LI X B, et al. Numerical simu-lation of cabin structure under inner explosion[J]. Chi-nese Journal of Ship Research, 2009, 4(4):7-11(in Chinese). http://www.ship-research.com/CN/abstract/abstract551.shtml
    丁阳, 陈晔, 师燕超.室内爆炸超压荷载简化模型[J].工程力学, 2015, 32(3):119-125, 133. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201503017.htm

    DING Y, CHEN Y, SHI Y C. Simplified model of overpressure loading caused by internal blast[J]. En-gineering Mechanics, 2015, 32(3):119-125, 133(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201503017.htm
    樊壮卿, 王伟力, 黄雪峰, 等.典型舱室内爆炸仿真分析[J].工程爆破, 2015, 21(3):13-17. http://www.cnki.com.cn/Article/CJFDTOTAL-GCBP201503004.htm

    FAN Z Q, WANG W L, HUANG X F, et al. Simula-tion analysis on typical cabin internal explosion[J]. Engineering Blasting, 2015, 21(3):13-17(in Chi-nese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCBP201503004.htm
    LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computation-al Physics, 1994, 115(1):200-212. doi: 10.1006/jcph.1994.1187
    JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228. doi: 10.1006/jcph.1996.0130
    SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[M]//QUARTERONI A. Advanced numerical approximation of nonlinear hyperbolic equations. Berlin Heidelberg:Springer, 1998:325-432.
    SHU C W. High order weighted essentially nonoscilla-tory schemes for convection dominated problems[J]. Siam Review, 2009, 51(1):82-126. doi: 10.1137/070679065
    HARTEN A, ENGQUIST B, OSHER S, et al. Uni-formly high order accurate essentially non-oscillatory schemes, Ⅲ[J]. Journal of Computational Physics, 1987, 71(2):231-303. doi: 10.1016/0021-9991(87)90031-3
    曹乐. 利用level set方法捕捉气、水界面的三维数值研究[D]. 合肥: 中国科学技术大学, 2009.

    CAO L. Three-dimensional computations on captur-ing of gas-water interface by level set method[D]. He-fei:University of Science and Technology of China, 2009(in Chinese).
    谢昌坦. 气-水可压缩流物质界面的R-M不稳定性研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.

    XIE C T. The study on R-M instability of the material interface in gas-water compressible flow[D]. Har-bin:Harbin Engineering University, 2011(in Chi-nese).
    SHU C W, OSHER S. Efficient implementation of es-sentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77(2):439-471. doi: 10.1016/0021-9991(88)90177-5
    SOD G A. A survey of several finite difference meth-ods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27(1):1-31. doi: 10.1016/0021-9991(78)90023-2
    WOODWARD P, COLELLA P. The numerical simu-lation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1):115-173. doi: 10.1016/0021-9991(84)90142-6
    ANDERSON C E Jr, BAKER W E, WAUTERS D K, et al. Quasi-static pressure, duration, and im-pulse for explosions (e.g. HE) in structures[J]. Inter-national Journal of Mechanical Sciences, 1983, 25(6):455-464. doi: 10.1016/0020-7403(83)90059-0
  • 2017-3-64_en.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (282) PDF downloads(170) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint