Yongbao LIU, Jianhua LIU, Youhong YU, Xing HE, Li LIU. Review of hot corrosion of thermal barrier coatings of gas turbine[J]. Chinese Journal of Ship Research, 2017, 12(2): 107-115. doi: 10.3969/j.issn.1673-3185.2017.02.014
Citation: Yongbao LIU, Jianhua LIU, Youhong YU, Xing HE, Li LIU. Review of hot corrosion of thermal barrier coatings of gas turbine[J]. Chinese Journal of Ship Research, 2017, 12(2): 107-115. doi: 10.3969/j.issn.1673-3185.2017.02.014

Review of hot corrosion of thermal barrier coatings of gas turbine

doi: 10.3969/j.issn.1673-3185.2017.02.014
  • Received Date: 2016-07-25
    Available Online: 2017-03-13
  • Publish Date: 2017-04-01
    © 2017 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • The review was done in order to make clear the problem of the hot corrosion of the Thermal Barrier Coatings (TBCs) during gas turbine serving. This paper summarizes the factors resulting from the hot corrosion of TBCs during turbine service and classifies methods for enhancing the corrosive resistance of TBCs. A prospective methodology for improving corrosion resistance is also formulated. The main types of corrosion coating include phase reaction, oxidizing of the bond coating, salt-fog corrosion, CMAS corrosion and fuel impurity corrosion. So far, methods for improving the corrosion resistance of TBCs include developing new coating materials, anticorrosive treatment on the surface of TBCs, modifying the stacking configuration and improving the cleansing functions of the gas turbines. In the future, developing new materials with excellent performance will still be the main direction for boosting the improvement of the hot corrosion resistance of TBCs. Simultaneously, improving the tacking configuration and nanotechnology of TBC coatings are potential approaches for improving corrosion resistance. With the development of a Ceramic Matrix Composite (CMC), the focus of the hot corrosion of TBCs may turn to that of Environmental Barrier Coatings (EBCs).
  • loading
  • [1]
    MILLER R A.History of thermal barrier coatings for gas turbine engines:NASA/TM-2009-215459[R]. Cleveland, Ohio:Glenn Research Center, 2009.
    [2]
    PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566):280-284. doi: 10.1126/science.1068609
    [3]
    郭洪波, 宫声凯, 徐惠彬.新型高温/超高温热障涂层及制备技术研究进展[J].航空学报, 2014, 35(10):2722-2732.

    GUO H B, GONG S K, XU H B. Research progress on new high/ultra-high temperature thermal barrier coat-ings and processing technologies[J]. Acta Aeronauti-caet Astronautica Sinica, 2014, 35(10):2722-2732(in Chinese).
    [4]
    STECURA S. Effects of compositional changes on the performance of a thermal barrier coating system:NASA TM-78976[R]. Cleveland, Ohio:Lewis Research Center, 1979.
    [5]
    KITAZAWA R, TANAKA M, KAGAWA Y, et al. Damage evolution of TBC system under in-phase ther-mo-mechanical tests[J]. Materials Science and Engi-neering:B, 2010, 173(1/2/3):130-134. https://www.researchgate.net/publication/248280590_Damage_Evolution_of_TBC_System_under_in-Phase_Thermo-Mechanical_Tests
    [6]
    KRÄMER S, YANG J, LEVI C G, et al. Thermochem-ical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS) deposits[J]. Journal of the American Ceramic Society, 2006, 89(10):3167-3175. doi: 10.1111/jace.2006.89.issue-10
    [7]
    MILLER R A, GARLICK R G, SMIALEK J L. Phase distributions in plasma-sprayed zirconia-yttria[J]. American Ceramic Society Bulletin, 1983, 62(12):1355-1358. https://www.researchgate.net/publication/4700384_Phase_Distributions_in_Plasma-Sprayed_Zirconia-Yttria
    [8]
    MILLER R A, SMIALEK J L, GARLICK R G. Phase stability in plasma-sprayed, partially stabilized zirco-nia-yttria[M]//HEUER AH, HOBBSLW. Advances in ceramics, Vol. 3:science and technology of zirconia. Columbus, OH:American Ceramic Society, 1981:241-252.
    [9]
    EVANS AG, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barri-er coatings[J]. Progress in Materials Science, 2001, 46(5):505-553. doi: 10.1016/S0079-6425(00)00020-7
    [10]
    JONES R L, GADOMSKI S T. The hot corrosion of CoCrAlY turbine blade coatings by Na2SO4 and vapor-ous NaCl[J]. Journal of the Electrochemical Society, 1977, 124(10):1641-1648. doi: 10.1149/1.2133126
    [11]
    项民, 骆军华, 张琦.盐雾腐蚀对热障涂层高温循环氧化性能的影响[J].航空学报, 2006, 27(1):138-141. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200601027.htm

    XIANG M, LUO J H, ZHANG Q. Influence of salt spray corrosion on high-temperature cyclic oxidation behavior of thermal barrier coatings[J]. Acta Aero-nauticaet Astronautica Sinica, 2006, 27(1):138-141(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200601027.htm
    [12]
    EVANS A G, FLECK N A, FAULHABER S, et al. Scalinglaws governing the erosion andimpact resis-tance of thermal barrier coatings[J]. Wear, 2006, 260(7/8):886-894. https://www.researchgate.net/publication/222546283_Scaling_Laws_Governing_the_Erosion_and_Impact_Resistance_of_Thermal_Barrier_Coatings
    [13]
    DREXLER J M, SHINODA K, ORTIZ AL, et al. Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J]. Acta Materialia, 2010, 58(20):6835-6844. doi: 10.1016/j.actamat.2010.09.013
    [14]
    STOTT F H, DE WET D J, TAYLOR R. Degradation of thermal-barrier coatings at very high temperatures[J]. MRS Bulletin, 1994, 19(10):46-49. doi: 10.1557/S0883769400048223
    [15]
    PENG H, WANG L, GUO L, et al. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits[J]. Progress in Natural Science:Materials International, 2012, 22(5):461-467. doi: 10.1016/j.pnsc.2012.06.007
    [16]
    KRAUSE A R, GARCES H F, DWIVEDI G, et al. Calcia-magnesia-alumino-silicate (CMAS)-in-duced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings[J]. Acta Materialia, 2016, 105:355-366. doi: 10.1016/j.actamat.2015.12.044
    [17]
    VIDAL-SETIF M H, CHELLAH N, RIO C, et al. Calcium-magnesium-alumino-silicate (CMAS) deg-radation of EB-PVD thermal barrier coatings:charac-terization of CMAS damage on ex-service high pres-sure blade TBCs[J]. Surface and Coatings Technolo-gy, 2012, 208:39-45. doi: 10.1016/j.surfcoat.2012.07.074
    [18]
    张小锋, 周克崧, 宋进兵, 等.等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及其CMAS腐蚀失效机制[J].无机材料学报, 2015, 30(3):287-293. doi: 10.15541/jim20140397

    ZHANG X F, ZHOU K S, SONG J B, et al. Deposi-tion and CMAS corrosion mechanism of 7YSZ thermal barriercoatings prepared by plasma spray-physical va-por deposition[J]. Journal of Inorganic Materials, 2015, 30(3):287-293(in Chinese). doi: 10.15541/jim20140397
    [19]
    JONES R L. Some aspects of the hot corrosion of ther-mal barrier coatings[J]. Journal of Thermal Spray Technology, 1997, 6(1):77-84. doi: 10.1007/BF02646315
    [20]
    BRATTON R J, LAU S K, ANDERSSON C A, et al. Studies of thermal barrier coatings for heat engines[C]//Proceedings of the 2nd Conference on Advanced Materials for Alternative-Fuel-Capable Heat En-gines. Palo Alto, America:Electric Power Research Institute, 1982:6-101.
    [21]
    KVEMES I, SOLBERG J K, LILLERUD K P. Ceram-ic coatings on diesel engine components[C]//Proceed-ings of the 1st Conference onAdvanced Materials for Alternative Fuel Capable Directly Fired Heat Engines. US:U. S. Dept. of Energy, CONF-790749, 1979:233-257.
    [22]
    HAMILTON J C, NAGELBERG A S. In Situ Raman spectroscopic study of yttria-stabilized zirconia attack by molten sodium vanadate[J]. Journal of the Ameri-can Ceramic Society, 1984, 67(10):686-690. doi: 10.1111/jace.1984.67.issue-10
    [23]
    BARKALOW R H, PETTIT E S. Mechanisms of hot corrosion attack of ceramic coating materials[C]//Pro-ceedings of the 1st Conference onAdvanced Materials for Alternative Fuel Capable Directly Fired Heat En-gines, CONF-790749. US:U.S. Dept. of Energy, 1979:704-714.
    [24]
    SINGHAL S C, BRATTON R J. Stability of a ZrO2(Y2O3) thermal barrier coating in turbine fuel with contaminants[J]. Journal of Engineering for Power, 1980, 102(4):770-775. doi: 10.1115/1.3230339
    [25]
    JONES R L. The development of hot-corrosion-resis-tant zirconia thermal barrier coatings[J]. Materials at High Temperatures, 1991, 9(4):228-236. doi: 10.1080/09603409.1991.11689664
    [26]
    MCKEE D W, LUTHRA K L, SIEMERS P, et al. Resistance of thermal barrier ceramic coatings to hot salt corrosion[C]//Proceedings of the 1st Conferen-ceon Advanced Materials for Alternative Fuel Capa-ble Directly Fired Heat Engines. US:U.S. Dept. of En-ergy, 1979:258-269.
    [27]
    VASSEN R, CAO X Q, TIETZ F, et al. Zirconates as new materials for thermal barrier coatings[J]. Jour-nal of the American Ceramic Society, 1999, 83(8):2023-2028. http://www.wenkuxiazai.com/doc/8f812b3031126edb6f1a108e-2.html
    [28]
    YUGESWARAN S, KOBAYASHI A, ANANTHA-PADMANABHAN P V. Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7 thermal barri-er coatings[J]. Journal of the European Ceramic Soci-ety, 2012, 32(4):823-834. doi: 10.1016/j.jeurceramsoc.2011.10.049
    [29]
    YUGESWARAN S, KOBAYASHI A, ANANTHA-PADMANABHAN P V. Initial phase hot corrosion mechanism of gas tunnel type plasma sprayed thermal barrier coatings[J]. Materials Science and Engineer-ing:B, 2012, 177(7):536-542. doi: 10.1016/j.mseb.2011.12.037
    [30]
    XIE X Y, GUO H B, GONG S K, et al. Hot corro-sion behavior of double-ceramic-laye LaTi2Al9O19/YSZ thermal barrier coatings[J]. Chinese Journal of Aeronautics, 2012, 25(1):137-142. doi: 10.1016/S1000-9361(11)60372-5
    [31]
    HABIBI M H, WANG L, LIANG J D, et al. An in-vestigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4+ V2O5 salt at 1100℃[J]. Corrosion Science, 2013, 75:409-414. doi: 10.1016/j.corsci.2013.06.025
    [32]
    HABIBI M H, YANG S Z, GUO S M. Phase stability and hot corrosion behavior of ZrO2-Ta2O5 compound in Na2SO4-V2O5 mixtures at elevated temperatures[J]. Ceramics International, 2014, 40(3):4077-4083. doi: 10.1016/j.ceramint.2013.08.062
    [33]
    CHEN X L, ZHAO Y, GU L J, et al. Hot corrosion behaviour of plasma sprayed YSZ/LaMgAl11O19 com-posite coatings in molten sulfate-vanadate salt[J]. Corrosion Science, 2011, 53(6):2335-2343. doi: 10.1016/j.corsci.2011.03.019
    [34]
    JONES R L. Scandia-stabilized zirconia for resis-tance to molten vanadate-sulfate corrosion[J]. Sur-face and Coatings Technology, 1989, 39/40:89-96. doi: 10.1016/0257-8972(89)90044-3
    [35]
    STECURA S. New ZrO2-Yb2O3 plasma-sprayed coat-ings for thermal barrier applications[J]. Thin Solid Films, 1987, 150(1):15-40. doi: 10.1016/0040-6090(87)90305-1
    [36]
    JONES R L, MESS D. India as a hot corrosion-resis-tant stabilizer for zirconia[J]. Journal of the Ameri-can Ceramic Society, 1992, 75(7):1818-1821. doi: 10.1111/jace.1992.75.issue-7
    [37]
    PARKA S Y, KIM J H, KIM M C, et al. Microscopic observation of degradation behavior in yttriaand ceria stabilized zirconia thermal barrier coatings under hot corrosion[J]. Surface and Coatings Technology, 2005, 190(2/3):357-365. https://www.researchgate.net/publication/248237328_Microscopic_Observation_of_Degradation_Behavior_in_Yttria_and_Ceria_Stabilized_Zirconia_Thermal_Barrier_Coatings_Under_Hot_Corrosion
    [38]
    KHOR K A, YANG J. Plasma sprayed ZrO2-Sm2O3 coatings:lattice parameters, tetragonality (c/a) and transformability of tetragonal zirconia phase in plas-ma-sprayed ZrO2-Er2O3 coatings[J]. Journal of Ma-terials Science Letters, 1997, 16(12):1002-1004. doi: 10.1023/A:1018597802063
    [39]
    SURESH A, MAYO M J, POTER W D. Thermody-namics of the tetragonal-to-monoclinic phase trans-formation in fine and nanocrystallineyttria-stabilized zirconia powders[J]. Journal of Materials Research, 2003, 18(12):2912-2921. doi: 10.1557/JMR.2003.0406
    [40]
    GARVIE R C, GOSS M F. Intrinsic size dependence of the phase transformation temperature in zirconia microcrystals[J]. Journal of Materials Science, 1986, 21(4):1253-1257. doi: 10.1007/BF00553259
    [41]
    GHASEMI R, SHOJA-RAZAVI R, MOZAFARINIA R, et al. Comparison of microstructure and mechani-cal properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings[J]. Ceramics International, 2013, 39(8):8805-8813. doi: 10.1016/j.ceramint.2013.04.068
    [42]
    JAMALI H, MOZAFARINIA R, RAZAVI R S, et al. Fabrication and evaluation of plasma-sprayed nano-structured and conventional YSZ thermal barrier coat-ings[J]. Current Nanoscience, 2012, 8(3):402-409. doi: 10.2174/157341312800620250
    [43]
    LIMA R S, MARPLE B R. Toward highly sinter-ing-resistant nanostructured ZrO2-7 wt.% Y2O3 coat-ings for TBC applications by employing differential sintering[J]. Journal of Thermal Spray Technology, 2008, 17(5/6):846-852.
    [44]
    LIMA R S, MARPLE B R. Nanostructured YSZ ther-mal barrier coatings engineered to counteract sinter-ing effects[J]. Materials Science and Engineering:A, 2008, 485(1/2):182-193.
    [45]
    WU J, GUO H B, ZHOU L, et al. Microstructure and thermal properties of plasma sprayed thermal bar-rier coatings from nanostructured YSZ[J]. Journal of Thermal Spray Technology, 2010, 19(6):1186-1194. doi: 10.1007/s11666-010-9535-7
    [46]
    JAMALI H, MOZAFARINIA R, SHOJA-RAZAVI R, et al. Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vana-dium pentoxide and sodium sulfate[J]. Journal of the European Ceramic Society, 2014, 34(2):485-492. doi: 10.1016/j.jeurceramsoc.2013.08.006
    [47]
    TSAI P C, HSU C S. High temperature corrosion re-sistance and microstructural evaluation of la-ser-glazed plasma-sprayed zirconia/MCrAlY thermal barrier coatings[J]. Surface and Coatings Technolo-gy, 2004, 183(1):29-34. doi: 10.1016/j.surfcoat.2003.08.090
    [48]
    TSAI P C, LEE J H, HSU C S. Hot corrosion behav-ior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5[J]. Surface and Coatings Technology, 2007, 201(9/10/11):5143-5147.
    [49]
    BATISTA C, PORTINHA A, RIBEIRO R M, et al. Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts[J]. Surface and Coatings Technology, 2006, 200(24):6783-6791. doi: 10.1016/j.surfcoat.2005.10.011
    [50]
    YAN S, SHANG Y J, XU X F, et al. Improving an-ti-corrosion property of thermal barrier coatings by in-tense pulsed ion beam irradiation[J]. Nuclear Instru-ments and Methods in Physics Research Section B, 2012, 272:450-453. doi: 10.1016/j.nimb.2011.01.121
    [51]
    CHEN Z, WU N Q, SINGH J, et al. Effect of Al2O3 overlay on hot-corrosion behavior of yttria-stabilized zirconia coating in molten sulfate-vanadate salt[J]. Thin Solid Films, 2003, 443(1/2):46-52.
    [52]
    AFRASIABI A, SAREMI M, KOBAYASHI A. A comparative study on hot corrosion resistance of three types of thermal barrier coatings:YSZ, YSZ + Al2O3 and YSZ/Al2O3[J]. Materials Science and Engineer-ing:A, 2008, 478(1/2):264-269.
    [53]
    ZHONG X H, WANG Y M, XU Z H, et al. Hot-cor-rosion behaviors of overlay-clad yttria-stabilized zir-conia coatings in contact with vanadate-sulfate salts[J]. Journal of the European Ceramic Society, 2010, 30(6):1401-1408. doi: 10.1016/j.jeurceramsoc.2009.10.017
    [54]
    NEJATI M, RAHIMIPOUR M R, MOBASHER-POUR I. Evaluation of hot corrosion behavior of CSZ, CSZ/microAl2O3 and CSZ/nanoAl2O3 plasma sprayed thermal barrier coatings[Z]. Ceramics International, 2014, 40(3):4579-4590. doi: 10.1016/j.ceramint.2013.08.135
    [55]
    KNUUTTILA J, SORSA P, MÄNTYLÄ T, et al. Sealing of thermal spray coatings by impregnation[J]. Journal of Thermal Spray Technology, 1999, 8(2):249-257. doi: 10.1007/s11666-999-0002-2
    [56]
    TROCZYNSKI T, YANG Q, JOHN G. Post-deposi-tion treatment of zirconia thermal barrier coatings us-ing Sol-Gel alumina[J]. Journal of Thermal Spray Technology, 1999, 8(2):229-234. doi: 10.1361/105996399770350458
    [57]
    曹雪强.热障涂层材料[M].北京:科学出版社, 2007:11.

    CAO X Q. Thermal barrier coating materials[M]. Bei-jing:Science Press, 2007:11(in Chinese).
    [58]
    MÜLLER J, NEUSCHÜTZ D. Efficiency of α-alumi-na as diffusion barrier between bond coat and bulk material of gas turbine blades[J]. Vacuum, 2003, 71(1/2):247-251.
    [59]
    KURANISHI T, HABAZAKI H, KONNO H. Oxida-tion-resistant multilayer coatings using an anodic alu-mina layer as a diffusion barrier on γ-TiAl substrates[J]. Surface and Coatings Technology, 2005, 200(7):2438-2444. doi: 10.1016/j.surfcoat.2004.08.211
    [60]
    张晓囡, 张华芳, 李庆芬, 等.热障涂层界面扩散阻挡层研究进展[J].材料导报, 2008, 22(4):14-17. http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200804004.htm

    ZHANG X N, ZHANG H F, LI Q F, et al. Research development of interface diffusion barriers in thermal barrier coatings[J]. Materials Review, 2008, 22(4):14-17(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200804004.htm
    [61]
    蔡妍, 易军, 陆峰, 等.热障涂层金属元素扩散阻挡层研究进展[J].材料工程, 2011(9):92-96. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201109017.htm

    CAI Y, YI J, LU F, et al. Development in research on metal diffusion barrier of TBCs[J]. Journal of Ma-terials Engineering, 2011(9):92-96(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201109017.htm
    [62]
    蔡妍, 李建平, 陆峰, 等.电弧离子镀TiC扩散障结构及抗高温氧化性能研究[J].真空, 2010, 47(5):5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201005003.htm

    CAI Y, LI J P, LU F, et al. Structure and antioxida-tion behavior of TiC diffusion barrier prepared by arc ion plating[J]. Vacuum, 2010, 47(5):5-8(in Chi-nese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201005003.htm
    [63]
    SU Y F. Protective control of the metal-ceramic inter-face behavior of thermal barrier coatings using an arti-ficial α-Al2O3layer[D]. USA:Stevens Institute of Technology, 2003.
    [64]
    TAKAHASHI M, ITOH Y, MIYAZAKIA M. Ther-mal barrier coatings design for gas turbine[C]//OHM-ORI A. Proceedings of 14th International Thermal Spraying. Kobe Japan:High Temperature Society of Japan, 1995:83-88.
    [65]
    KAWASAKI A, WATANABE R. Cyclic thermal frac-ture behavior and spallation life of PSZ/NiCrAlY func-tionally graded thermal barrier coatings[J]. Materials Science Forum, 1999, 308/311:402-409. doi: 10.4028/www.scientific.net/MSF.308-311
    [66]
    ZHU D M, MILLER R A. Thermal and environmental barrier coatings for advanced propulsion engine sys-tems:NASA/TM-2004-213129[R]. Cleveland, Ohio:Lewis Research Center, 2004.
    [67]
    周益春, 刘奇星, 杨丽, 等.热障涂层的破坏机理与寿命预测[J].固体力学学报, 2010, 31(5):504-531. http://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201005010.htm

    ZHOU Y C, LIU Q X, YANG L, et al. Failure mech-anisms and life prediction of thermal barrier coatings[J]. Chinese Journal of Solid Mechanics, 2010, 31(5):504-531(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201005010.htm
    [68]
    RAMASAMY S, TEWARIS N, LEEK N, et al. EBC development for hot-pressed Y2O3/Al2O3 doped silicon nitride ceramics[J]. Materials Science and Engineer-ing:A, 2010, 527(21/22):5492-5498.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (358) PDF downloads(173) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return