Volume 18 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
FANG C X, GUO X W. An operational effectiveness evaluation method for surface warships in complex operational test environment[J]. Chinese Journal of Ship Research, 2023, 18(3): 259–265 doi: 10.19693/j.issn.1673-3185.03048
Citation: FANG C X, GUO X W. An operational effectiveness evaluation method for surface warships in complex operational test environment[J]. Chinese Journal of Ship Research, 2023, 18(3): 259–265 doi: 10.19693/j.issn.1673-3185.03048

An operational effectiveness evaluation method for surface warships in complex operational test environment

doi: 10.19693/j.issn.1673-3185.03048
  • Received Date: 2022-08-19
  • Rev Recd Date: 2023-05-19
  • Available Online: 2023-06-02
  • Publish Date: 2023-06-30
    © 2023 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  In order to evaluate the operational effectiveness of surface warships more reasonably, this article proposes improving the existing evaluation methods to better suit complex battlefield environments.   Methods   First, according to operational test items and test scenarios planning, the content of the warship platform test items are analyzed, and classification standards for complex battlefield environments' operational intensity and electromagnetic environment are designed. An improved method for evaluating combat effectiveness based on the influence factors of complex battlefield environments is then proposed, and the operational effectiveness of a certain type of surface warship in an anti-air warfare environment is evaluated.   Results  The results show that the proposed method is effective.   Conclusions   The proposed method fully considers the influence of complex battlefield environments on the combat capability of different operational units, and solves the problem of existing operational effectiveness evaluation methods failing to fit the actual situation of complex battlefield environments. As such, this study can provide valuable references for the operational testing of naval vessels.
  • loading
  • [1]
    KASS R A, ALBERTS D S, HAYES R E. 作战试验及其逻辑[M]. 马增军, 孟凡松, 车福德, 等, 译. 北京: 国防工业出版社, 2010: 115–173.

    KASS R A, ALBERTS D S, HAYES R E. Logic of warfighting experiments[M]. MA Z J, MENG F S, CHE D F, et al, trans. Beijing: National Defense Industry Press, 2010: 115–173 (in Chinese).
    [2]
    房灿新, 郑锦, 赵立志. 舰艇性能试验与作战试验一体化设计[J]. 指挥控制与仿真, 2016, 38(5): 135–138. doi: 10.3969/j.issn.1673-3819.2016.05.030

    FANG C X, ZHENG J, ZHAO L Z. Integrated design of warship performance test and operation test[J]. Command Control & Simulation, 2016, 38(5): 135–138 (in Chinese). doi: 10.3969/j.issn.1673-3819.2016.05.030
    [3]
    徐强, 金振中, 杨继坤. 美军水面舰艇作战试验研究及启示[J]. 火力与指挥控制, 2022, 47(2): 176–179, 185. doi: 10.3969/j.issn.1002-0640.2022.02.030

    XU Q, JIN Z Z, YANG J K. Research and enlightenment on the operational test of US army surface ships[J]. Fire Control & Command Control, 2022, 47(2): 176–179, 185 (in Chinese). doi: 10.3969/j.issn.1002-0640.2022.02.030
    [4]
    王金良, 郭齐胜, 李玉山, 等. 陆军开展装备作战试验的总体思考[J]. 装甲兵工程学院学报, 2016, 30(3): 1–6.

    WANG J L, GUO Q S, LI Y S, et al. General reflection on the army equipment operational test[J]. Journal of Academy of Armored Force Engineering, 2016, 30(3): 1–6 (in Chinese).
    [5]
    柯宏发, 杜红梅, 祝冀鲁. 电子装备作战试验模式问题研究[J]. 国防科技, 2015, 36(4): 34–41. doi: 10.13943/j.issn1671-4547.2015.04.09

    KE H F, DU H M, ZHU J L. Study on operational test pattern of electronic equipment[J]. National Defense Science & Technology, 2015, 36(4): 34–41 (in Chinese). doi: 10.13943/j.issn1671-4547.2015.04.09
    [6]
    杨星, 潘谊春, 杜克新. 基于ADC模型的某雷达干扰系统效能分析[J]. 火力与指挥控制, 2009, 34(2): 72–75. doi: 10.3969/j.issn.1002-0640.2009.02.020

    YANG X, PAN Y C, DU K X. Radar jamming system effectiveness analysis based on ADC model[J]. Fire Control & Command Control, 2009, 34(2): 72–75 (in Chinese). doi: 10.3969/j.issn.1002-0640.2009.02.020
    [7]
    燕雪峰, 张德平, 黄晓冬, 等. 面向任务的体系效能评估[M]. 北京: 电子工业出版社, 2020: 93–107.

    YAN X F, ZHANG D P, HUANG X D, et al. Mission oriented effectiveness evaluation and optimization of system of systems[M]. Beijing: Publishing House of Electronics Industry, 2020: 93–107 (in Chinese).
    [8]
    孙永林, 阮永贵, 肖虎, 等. 基于模糊评判的ESM系统作战效能评估[J]. 舰船电子工程, 2020, 40(8): 134–136, 140. doi: 10.3969/j.issn.1672-9730.2020.08.033

    SUN Y L, RUAN Y G, XIAO H, et al. Operational efficiency evaluation of ESM system based on fuzzy comprehensive evaluation[J]. Ship Electronic Engineering, 2020, 40(8): 134–136, 140 (in Chinese). doi: 10.3969/j.issn.1672-9730.2020.08.033
    [9]
    曹裕华, 王元钦. 装备作战试验理论与方法[M]. 北京: 国防工业出版社, 2016: 1–52.

    CAO Y H, WANG Y Q. Theory and method of equipment operational tyest[M]. Beijing: National Defense Industry Press, 2016: 1–52 (in Chinese).
    [10]
    中国人民解放军总装备部. 战场电磁环境分类与分级方法: GJB 6520−2008[S]. 北京: 总装备部军标出版发行部, 2008.

    General Armament Department of PLA. Classification and gradation methods for battlefield electromagnetic environment: GJB 6520-2008[S]. Beijing: Publishing and Distribution Department of General Armament Department of PLA, 2008 (in Chinese).
    [11]
    王凯, 赵定海, 闫耀东, 等. 武器装备作战试验[M]. 北京: 国防工业出版社, 2012: 194–218.

    WANG K, ZHAO D H, YAN Y D, et al. Weapon equipment operational test[M]. Beijing: National Defense Industry Press, 2012: 194–218 (in Chinese).
    [12]
    雷永林, 朱智, 甘斌, 等. 基于仿真的复杂武器系统作战效能评估框架研究[J]. 系统仿真学报, 2020, 32(9): 1654–1663. doi: 10.16182/j.issn1004731x.joss.20-0373

    LEI Y L, ZHU Z, GAN B, et al. Combat effectiveness simulation evaluation framework of complex weapon system[J]. Journal of System Simulation, 2020, 32(9): 1654–1663 (in Chinese). doi: 10.16182/j.issn1004731x.joss.20-0373
    [13]
    岳超源. 决策理论与方法[M]. 北京: 科学出版社, 2003: 206–208.

    YUE C Y. Decision theory and method[M]. Beijing: Science Press, 2003: 206–208 (in Chinese).
    [14]
    王剑飞, 武文军, 李红星, 等. 基于信息熵的美军C4ISR系统效能评估[J]. 电光与控制, 2006, 13(2): 24–28, 32. doi: 10.3969/j.issn.1671-637X.2006.02.007

    WANG J F, WU W J, LI H X, et al. Evaluation of US army C4ISR system effectiveness based on Shannon information entropy[J]. Electronics Optics & Control, 2006, 13(2): 24–28, 32 (in Chinese). doi: 10.3969/j.issn.1671-637X.2006.02.007
    [15]
    徐敬, 张生. 基于信息熵的反导系统综合作战效能评估研究[J]. 指挥控制与仿真, 2010, 32(5): 63–66.

    XU J, ZHANG S. Research on integrative operation effectiveness evaluation of anti-missile systems based on information entropy[J]. Command Control & Simulation, 2010, 32(5): 63–66 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article Views(2969) PDF Downloads(551) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return