Citation: | NI B Y, XU Y, HUANG Q, et al. Application of improved cohesive zone length formula in ice mode I crack propagation[J]. Chinese Journal of Ship Research, 2022, 17(3): 58–66 doi: 10.19693/j.issn.1673-3185.02701 |
[1] |
刘璐, 龙雪, 季顺迎. 基于扩展多面体的离散单元法及其作用于圆桩的冰载荷计算[J]. 力学学报, 2015, 47(6): 1046–1057. doi: 10.6052/0459-1879-15-121
LIU L, LONG X, JI S Y. Dilated polyhedra based discrete element method and its application of ice load on cylindrical pile[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1046–1057 (in Chinese). doi: 10.6052/0459-1879-15-121
|
[2] |
DI S C, XUE Y Z, WANG Q, et al. Discrete element simulation of ice loads on narrow conical structures[J]. Ocean Engineering, 2017, 146: 282–297. doi: 10.1016/j.oceaneng.2017.09.033
|
[3] |
王健伟, 邹早建. 基于非线性有限元法的船舶-冰层碰撞结构响应研究[J]. 振动与冲击, 2015, 34(23): 125–130.
WANG J W, ZOU Z J. Ship's structural response during its collision with level ice based on nonlinear finite element method[J]. Journal of Vibration and Shock, 2015, 34(23): 125–130 (in Chinese).
|
[4] |
DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100–104. doi: 10.1016/0022-5096(60)90013-2
|
[5] |
BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55–129.
|
[6] |
NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525–531. doi: 10.1115/1.3173064
|
[7] |
MULMULE S V, DEMPSEY J P. Scale effects on sea ice fracture[J]. Mechanics of Cohesive-Frictional Materials, 1999, 4(6): 505–524. doi: 10.1002/(SICI)1099-1484(199911)4:6<505::AID-CFM67>3.0.CO;2-P
|
[8] |
MULMULE S V, DEMPSEY J P. A viscoelastic fictitious crack model for the fracture of sea ice[J]. Mechanics of Time-Dependent Materials, 1997, 1(4): 331–356. doi: 10.1023/A:1008063516422
|
[9] |
KUUTTI J, KOLARI K, MARJAVAARA P. Simulation of ice crushing experiments with cohesive surface methodology[J]. Cold Regions Science and Technology, 2013, 92: 17–28. doi: 10.1016/j.coldregions.2013.03.008
|
[10] |
LU W J, LØSET S, LUBBAD R. Simulating ice-sloping structure interactions with the cohesive element method[C]//Proceedings of the ASME 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: ASME, 2012.
|
[11] |
WANG F, ZOU Z J, GUO H P, et al. Numerical simulations of continuous icebreaking process with different heel angles in level ice[C]//Proceedings of the 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid, Spain: ASME, 2018.
|
[12] |
王峰, 邹早建, 任奕舟. 基于粘聚单元模型的平整冰-竖直圆柱体碰撞数值模拟[J]. 振动与冲击, 2019, 38(16): 153–158.
WANG F, ZOU Z J, REN Y Z. Numerical simulation of level ice-vertical cylinder collision based on a cohesive element model[J]. Journal of Vibration and Shock, 2019, 38(16): 153–158 (in Chinese).
|
[13] |
刘路平, 李欣, 徐胜文, 等. 基于黏聚单元法的抗冰海洋平台与层冰相互作用数值模拟[J]. 海洋工程, 2019, 37(2): 20–28.
LIU L P, LI X, XU S W, et al. Numerical simulation of interaction between ice-resistant platform and level ice with cohesive element method[J]. The Ocean Engineering, 2019, 37(2): 20–28 (in Chinese).
|
[14] |
蒋昱妍. 基于粘聚单元法的海洋结构物-层冰碰撞数值模拟[D]. 大连: 大连理工大学, 2020.
JIANG Y Y. Numerical simulation of marine structure–level ice collision based on the cohesive element method[D]. Dalian: Dalian University of Technology, 2020 (in Chinese).
|
[15] |
GÜRTNER A, BJERKÅS M, KÜHNLEIN W, et al. Numerical simulation of ice action to a lighthouse[C]//Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, Hawaii, USA: ASME, 2009.
|
[16] |
HARPER P W, HALLETT S R. Cohesive zone length in numerical simulations of composite delamination[J]. Engineering Fracture Mechanics, 2008, 75(16): 4774–4792. doi: 10.1016/j.engfracmech.2008.06.004
|
[17] |
BAO G, SUO Z. Remarks on crack-bridging concepts[J]. Applied Mechanics Reviews, 1992, 45(8): 355–366. doi: 10.1115/1.3119764
|
[18] |
NEEDLEMAN A. Micromechanical modelling of interfacial decohesion[J]. Ultramicroscopy, 1992, 40(3): 203–214. doi: 10.1016/0304-3991(92)90117-3
|
[19] |
TVERGAARD V, HUTCHINSON J W. The influence of plasticity on mixed mode interface toughness[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(6): 1119–1135. doi: 10.1016/0022-5096(93)90057-M
|
[20] |
MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface elements[J]. Journal of Composite Materials, 1998, 32(14): 1246–1272. doi: 10.1177/002199839803201401
|
[21] |
XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397–1434. doi: 10.1016/0022-5096(94)90003-5
|
[22] |
李世愚, 和泰明, 尹祥础. 岩石断裂力学[M]. 北京: 科学出版社, 2015.
LI S Y, HE T M, YIN X C. Rock fracture mechanics[M]. Beijing: Science Press, 2015 (in Chinese).
|
[23] |
HILLERBORG A, MODÉER M, PETERSSON P. E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773–781. doi: 10.1016/0008-8846(76)90007-7
|
[24] |
WANG F, ZOU Z J, ZHOU L, et al. Numerical simulation of ice milling loads on propeller blade with cohesive element method[J]. Brodogradnja, 2019, 70(1): 109–128. doi: 10.21278/brod70108
|
[25] |
PLANAS J, ELICES M. Nonlinear fracture of cohesive materials[J]. International Journal of Fracture, 1991, 51(2): 139–157. doi: 10.1007/BF00033975
|
[26] |
倪宝玉, 黄其, 陈绾绶, 等. 计及流体影响的船舶回转冰阻力数值模拟[J]. 中国舰船研究, 2020, 15(2): 1–7.
NI B Y, HUANG Q, CHEN W S, et al. Numerical simulation of ice resistance of ship turning in level ice zone considering fluid effects[J]. Chinese Journal of Ship Research, 2020, 15(2): 1–7 (in Chinese).
|
[27] |
TIMCO G W, WEEKS W F. A review of the engineering properties of sea ice[J]. Cold Regions Science andTechnology, 2010, 60(2): 107–129. doi: 10.1016/j.coldregions.2009.10.003
|
[28] |
薛彦卓, 陆锡奎, 王庆, 等. 冰三点弯曲试验的近场动力学数值模拟[J]. 哈尔滨工程大学学报, 2018, 39(4): 607–613.
XUE Y Z, LU X K, WANG Q, et al. Simulation of three-point bending test of ice based on peridynamic[J]. Journal of Harbin Engineering University, 2018, 39(4): 607–613 (in Chinese).
|
![]() |
![]() |
![]() |
![]() |