Volume 17 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
NI B Y, XU Y, HUANG Q, et al. Application of improved cohesive zone length formula in ice mode I crack propagation[J]. Chinese Journal of Ship Research, 2022, 17(3): 58–66 doi: 10.19693/j.issn.1673-3185.02701
Citation: NI B Y, XU Y, HUANG Q, et al. Application of improved cohesive zone length formula in ice mode I crack propagation[J]. Chinese Journal of Ship Research, 2022, 17(3): 58–66 doi: 10.19693/j.issn.1673-3185.02701

Application of improved cohesive zone length formula in ice mode I crack propagation

doi: 10.19693/j.issn.1673-3185.02701
  • Received Date: 2021-12-14
  • Rev Recd Date: 2022-04-07
  • Available Online: 2022-05-24
  • Publish Date: 2022-06-30
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  The cohesive zone length is the sum of the cohesive element length at the failure edge and the lengths of the other cohesive elements connected to it. The cohesive zone length determines the maximum size of the mesh. Therefore, the accurate estimation of cohesive zone length and reasonable mesh division are important factors affecting calculation accuracy.   Methods  Based on several J-integral assumptions and existing research results, a modified function on length thickness ratio value is added to the original formula. The modified formula is then applied to an ice mechanics model. Based on the finite element method, a model of a double cantilever beam is established to verify the accuracy of the formula through comparison with the experimental results.  Results  The results show that there must be at least four cohesive elements in a cohesive zone length to describe the fracture process accurately. This conclusion is also applied to the numerical simulation of a three-point bending experiment. The error of the limit load is 2.9%, and that of the fracture point is within a reasonable range.  Conclusion   It is concluded that the modified cohesive zone length formula is more suitable for ice materials.
  • loading
  • [1]
    刘璐, 龙雪, 季顺迎. 基于扩展多面体的离散单元法及其作用于圆桩的冰载荷计算[J]. 力学学报, 2015, 47(6): 1046–1057. doi: 10.6052/0459-1879-15-121

    LIU L, LONG X, JI S Y. Dilated polyhedra based discrete element method and its application of ice load on cylindrical pile[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1046–1057 (in Chinese). doi: 10.6052/0459-1879-15-121
    [2]
    DI S C, XUE Y Z, WANG Q, et al. Discrete element simulation of ice loads on narrow conical structures[J]. Ocean Engineering, 2017, 146: 282–297. doi: 10.1016/j.oceaneng.2017.09.033
    [3]
    王健伟, 邹早建. 基于非线性有限元法的船舶-冰层碰撞结构响应研究[J]. 振动与冲击, 2015, 34(23): 125–130.

    WANG J W, ZOU Z J. Ship's structural response during its collision with level ice based on nonlinear finite element method[J]. Journal of Vibration and Shock, 2015, 34(23): 125–130 (in Chinese).
    [4]
    DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100–104. doi: 10.1016/0022-5096(60)90013-2
    [5]
    BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55–129.
    [6]
    NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525–531. doi: 10.1115/1.3173064
    [7]
    MULMULE S V, DEMPSEY J P. Scale effects on sea ice fracture[J]. Mechanics of Cohesive-Frictional Materials, 1999, 4(6): 505–524. doi: 10.1002/(SICI)1099-1484(199911)4:6<505::AID-CFM67>3.0.CO;2-P
    [8]
    MULMULE S V, DEMPSEY J P. A viscoelastic fictitious crack model for the fracture of sea ice[J]. Mechanics of Time-Dependent Materials, 1997, 1(4): 331–356. doi: 10.1023/A:1008063516422
    [9]
    KUUTTI J, KOLARI K, MARJAVAARA P. Simulation of ice crushing experiments with cohesive surface methodology[J]. Cold Regions Science and Technology, 2013, 92: 17–28. doi: 10.1016/j.coldregions.2013.03.008
    [10]
    LU W J, LØSET S, LUBBAD R. Simulating ice-sloping structure interactions with the cohesive element method[C]//Proceedings of the ASME 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: ASME, 2012.
    [11]
    WANG F, ZOU Z J, GUO H P, et al. Numerical simulations of continuous icebreaking process with different heel angles in level ice[C]//Proceedings of the 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid, Spain: ASME, 2018.
    [12]
    王峰, 邹早建, 任奕舟. 基于粘聚单元模型的平整冰-竖直圆柱体碰撞数值模拟[J]. 振动与冲击, 2019, 38(16): 153–158.

    WANG F, ZOU Z J, REN Y Z. Numerical simulation of level ice-vertical cylinder collision based on a cohesive element model[J]. Journal of Vibration and Shock, 2019, 38(16): 153–158 (in Chinese).
    [13]
    刘路平, 李欣, 徐胜文, 等. 基于黏聚单元法的抗冰海洋平台与层冰相互作用数值模拟[J]. 海洋工程, 2019, 37(2): 20–28.

    LIU L P, LI X, XU S W, et al. Numerical simulation of interaction between ice-resistant platform and level ice with cohesive element method[J]. The Ocean Engineering, 2019, 37(2): 20–28 (in Chinese).
    [14]
    蒋昱妍. 基于粘聚单元法的海洋结构物-层冰碰撞数值模拟[D]. 大连: 大连理工大学, 2020.

    JIANG Y Y. Numerical simulation of marine structure–level ice collision based on the cohesive element method[D]. Dalian: Dalian University of Technology, 2020 (in Chinese).
    [15]
    GÜRTNER A, BJERKÅS M, KÜHNLEIN W, et al. Numerical simulation of ice action to a lighthouse[C]//Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, Hawaii, USA: ASME, 2009.
    [16]
    HARPER P W, HALLETT S R. Cohesive zone length in numerical simulations of composite delamination[J]. Engineering Fracture Mechanics, 2008, 75(16): 4774–4792. doi: 10.1016/j.engfracmech.2008.06.004
    [17]
    BAO G, SUO Z. Remarks on crack-bridging concepts[J]. Applied Mechanics Reviews, 1992, 45(8): 355–366. doi: 10.1115/1.3119764
    [18]
    NEEDLEMAN A. Micromechanical modelling of interfacial decohesion[J]. Ultramicroscopy, 1992, 40(3): 203–214. doi: 10.1016/0304-3991(92)90117-3
    [19]
    TVERGAARD V, HUTCHINSON J W. The influence of plasticity on mixed mode interface toughness[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(6): 1119–1135. doi: 10.1016/0022-5096(93)90057-M
    [20]
    MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface elements[J]. Journal of Composite Materials, 1998, 32(14): 1246–1272. doi: 10.1177/002199839803201401
    [21]
    XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397–1434. doi: 10.1016/0022-5096(94)90003-5
    [22]
    李世愚, 和泰明, 尹祥础. 岩石断裂力学[M]. 北京: 科学出版社, 2015.

    LI S Y, HE T M, YIN X C. Rock fracture mechanics[M]. Beijing: Science Press, 2015 (in Chinese).
    [23]
    HILLERBORG A, MODÉER M, PETERSSON P. E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773–781. doi: 10.1016/0008-8846(76)90007-7
    [24]
    WANG F, ZOU Z J, ZHOU L, et al. Numerical simulation of ice milling loads on propeller blade with cohesive element method[J]. Brodogradnja, 2019, 70(1): 109–128. doi: 10.21278/brod70108
    [25]
    PLANAS J, ELICES M. Nonlinear fracture of cohesive materials[J]. International Journal of Fracture, 1991, 51(2): 139–157. doi: 10.1007/BF00033975
    [26]
    倪宝玉, 黄其, 陈绾绶, 等. 计及流体影响的船舶回转冰阻力数值模拟[J]. 中国舰船研究, 2020, 15(2): 1–7.

    NI B Y, HUANG Q, CHEN W S, et al. Numerical simulation of ice resistance of ship turning in level ice zone considering fluid effects[J]. Chinese Journal of Ship Research, 2020, 15(2): 1–7 (in Chinese).
    [27]
    TIMCO G W, WEEKS W F. A review of the engineering properties of sea ice[J]. Cold Regions Science andTechnology, 2010, 60(2): 107–129. doi: 10.1016/j.coldregions.2009.10.003
    [28]
    薛彦卓, 陆锡奎, 王庆, 等. 冰三点弯曲试验的近场动力学数值模拟[J]. 哈尔滨工程大学学报, 2018, 39(4): 607–613.

    XUE Y Z, LU X K, WANG Q, et al. Simulation of three-point bending test of ice based on peridynamic[J]. Journal of Harbin Engineering University, 2018, 39(4): 607–613 (in Chinese).
  • ZG2701_en.pdf
    ZG2701_en.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article Views(449) PDF Downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return