Volume 17 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
ZHOU L, QIU Z Q, YUAN Y S, et al. Vortex-induced vibration of cylinder under sub-critical Reynolds number[J]. Chinese Journal of Ship Research, 2022, 17(3): 145–152 doi: 10.19693/j.issn.1673-3185.02694
Citation: ZHOU L, QIU Z Q, YUAN Y S, et al. Vortex-induced vibration of cylinder under sub-critical Reynolds number[J]. Chinese Journal of Ship Research, 2022, 17(3): 145–152 doi: 10.19693/j.issn.1673-3185.02694

Vortex-induced vibration of cylinder under sub-critical Reynolds number

doi: 10.19693/j.issn.1673-3185.02694
  • Received Date: 2021-12-07
  • Rev Recd Date: 2022-02-17
  • Available Online: 2022-06-17
  • Publish Date: 2022-06-30
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objective  In order to achieve the accurate prediction of the amplitude response of a vortex-induced vibrating cylinder under the sub-critical Reynolds number, a method for establishing a Cl-A/D (lift coefficient-amplitude ratio)model of the forced vibration of the cylinder by numerical simulation is proposed.  Methods  Based on the Realizable k-ε model, a two-dimensional numerical simulation of the forced vibration of a cylinder is carried out using the finite volume method. The calculated lift coefficient curves under different amplitude ratios A/D in the range of excitation frequency ratio fe/fn=1 are obtained. The lift coefficient corresponding to the maximum vibration velocity of the cylinder is then selected to establish the Cl-A/D model.   Results  The results show that the overall trend of the Cl-A/D fitting curve is in good agreement with the predicted results of SHEAR7. At the same time, it is found that the "zero lift coefficient" points under each excitation frequency ratio fe/fn are all located near the amplitude ratio A/D=0.8, and the wake shedding mode changes around A/D=0.8 from "P+S" to "2P" (P represents a pair of vortex shedding with opposite rotation directions, and S represents a single vortex shedding). In the vortex-induced vibration experiment of a single cylinder, the maximum amplitude when "lock-in" occurs is around 0.8D.   Conclusions  The amplitude ratio corresponding to the "zero lift coefficient" of the Cl-A/D model of forced vibrating cylinder under sub-critical Reynolds number is consistent with the maximum response amplitude ratio of the cylinder under vortex-induced vibration, and the shedding mode of the wake vortex changes under this amplitude ratio.
  • loading
  • [1]
    WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36(1): 413–455. doi: 10.1146/annurev.fluid.36.050802.122128
    [2]
    侯磊, 丁云峰, 王晴, 等. 高雷诺数下水翼涡发放频率预报方法[J]. 中国舰船研究, 2019, 14(6): 88–97.

    HOU L, DING Y F, WANG Q, et al. Prediction method of hydrofoil vortex shedding frequency at high Reynolds numbers[J]. Chinese Journal of Ship Research, 2019, 14(6): 88–97 (in Chinese).
    [3]
    WILLIAMSON C H K, ROSHKO A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of Fluids and Structures, 1988, 2(4): 355–381. doi: 10.1016/S0889-9746(88)90058-8
    [4]
    PEPPA S, KAIKTSIS L, TRIANTAFYLLOU G S. Hydrodynamic forces and flow structures in flow past a cylinder forced to vibrate transversely and inline to a steady flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138(1): 011803. doi: 10.1115/1.4032031
    [5]
    MENEGHINI J R, BEARMAN P W. Numerical simulation of high amplitude oscillatory flow about a circular cylinder[J]. Journal of Fluids and Structures, 1995, 9(4): 435–455. doi: 10.1006/jfls.1995.1025
    [6]
    MORSE T L, WILLIAMSON C H K. Fluid forcing, wake modes, and transitions for a cylinder undergoing controlled oscillation[J]. Journal of Fluids and Structures, 2009, 25(4): 697–712. doi: 10.1016/j.jfluidstructs.2008.12.003
    [7]
    MORSE T L, WILLIAMSON C H K. Prediction of vortex-induced vibration response by employing controlled motion[J]. Journal of Fluid Mechanics, 2009, 634: 5–39. doi: 10.1017/S0022112009990516
    [8]
    王凯鹏, 赵西增. 横向受迫振荡圆柱绕流升阻力系数研究[J]. 江苏科技大学学报(自然科学版), 2017, 31(5): 579–585.

    WANG K P, ZHAO X Z. Research about lift and drag coefficient of circular cylinder oscillating transverse to the flow[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2017, 31(5): 579–585 (in Chinese).
    [9]
    朱永健, 宗智. 定常流中横向振动圆柱的升力突变现象研究[J]. 水动力学研究与进展A辑, 2020, 35(5): 592–600.

    ZHU Y J, ZONG Z. Study on the sharp change of lift force of a cylinder with transverse vibration in the steady flow[J]. Chinese Journal of Hydrodynamics, 2020, 35(5): 592–600 (in Chinese).
    [10]
    邓迪, 王哲, 万德成. 振荡流中二维圆柱的涡激振动数值模拟[J]. 中国舰船研究, 2018, 13(增刊1): 7-14.

    DENG D, WANG Z, WANG D C. Numerical simulation of vortex-induced vibration of a 2D cylinder in oscillatory flow[J]. Chinese Journal of Ship Research, 2018, 13(Supp 1): 7-14 (in Chinese).
    [11]
    WU J , M. LEKKALA K R, ONG M C. Numerical investigation of vortex-induced vibrations of a flexible riser with staggered buoyancy elements[J]. Applied Sciences-Basel, 2020, 10(3): 905. doi: 10.3390/app10030905
    [12]
    VANDIVER J K, LI L. SHEAR7 program theory manual[M]. [S.l.]: Department of Ocean Engineering, MIT, 1999.
    [13]
    段金龙, 周济福, 王旭, 等. 剪切流场中含内流立管横向涡激振动特性[J]. 力学学报, 2021, 53(7): 1876–1884. doi: 10.6052/0459-1879-21-171

    DUAN J L, ZHOU J F, WANG X, et al. Cross-flow vortex-induced vibration of a flexible riser with internal flow in shear current[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1876–1884 (in Chinese). doi: 10.6052/0459-1879-21-171
    [14]
    SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227–238.
    [15]
    邓跃. 低雷诺数下均匀流和振荡流共同作用的圆柱体受迫振动和涡激振动研究[D]. 青岛: 中国海洋大学, 2014.

    DENG Y. Study on forced oscillation and vortex-induced vibration (VIV) of circular cylinder under combined uniform flow and oscillatory flow at low Reynolds number[D]. Qingdao: Ocean University of China, 2014 (in Chinese).
    [16]
    喻晨欣, 王嘉松, 郑瀚旭. 高分辨率TVD-FVM方法求解二维圆柱受迫振动问题[J]. 水动力学研究与进展A辑, 2018, 33(5): 593–600.

    YU C X, WANG J S, ZHENG H X. Two-dimensional simulation on forced oscillations of a circular cylinder using high-resolution TVD-FVM method[J]. Chinese Journal of Hydrodynamics, 2018, 33(5): 593–600 (in Chinese).
    [17]
    SARPKAYA T. Hydrodynamic damping, flow-induced oscillations, and biharmonic response[J]. Journal of offshore Mechanics and Arctic engineering, 1995, 117(4): 232–238. doi: 10.1115/1.2827228
    [18]
    GOPALKRISHNAN R. Vortex-induced forces on oscillating bluff cylinders[D]. Cambridge: Massachusetts Institute of Technology, 1993.
    [19]
    樊娟娟, 唐友刚, 张若瑜, 等. 高雷诺数下圆柱绕流与大振幅比受迫振动的数值模拟[J]. 水动力学研究与进展A辑, 2012, 27(1): 24–32.

    FAN J J, TANG Y G, ZHANG R Y, et al. Numerical simulation of viscous flow around circular cylinder at high Reynolds numbers and forced oscillating at large ratio of amplitude[J]. Chinese Journal of Hydrodynamics, 2012, 27(1): 24–32 (in Chinese).
    [20]
    PARK K S, KIM Y T, KIM D K, et al. A new method for strake configuration design of Steel Catenary Risers[J]. Ships and Offshore Structures, 2016, 11(4): 385–404. doi: 10.1080/17445302.2014.999479
  • ZG2694_en.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article Views(351) PDF Downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return