Volume 17 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
MAO L W, ZHU X M, HUANG Z X, et al. Impact response of composite lattice sandwich plate structure subjected to underwater explosion[J]. Chinese Journal of Ship Research, 2022, 17(3): 253–263 doi: 10.19693/j.issn.1673-3185.02503
Citation: MAO L W, ZHU X M, HUANG Z X, et al. Impact response of composite lattice sandwich plate structure subjected to underwater explosion[J]. Chinese Journal of Ship Research, 2022, 17(3): 253–263 doi: 10.19693/j.issn.1673-3185.02503

Impact response of composite lattice sandwich plate structure subjected to underwater explosion

doi: 10.19693/j.issn.1673-3185.02503
  • Received Date: 2021-08-26
  • Rev Recd Date: 2021-09-17
  • Available Online: 2022-06-20
  • Publish Date: 2022-06-30
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objective  In order to improve the anti-shock perfomance of ships subjected to underwater explosion, this paper studies the energy absorption and impact resistance of the new protective structure consisted of carbon fiber reinforced plastic (CFRP)-lattice aluminum sandwich plates.   Methods  First, finite element software ABAQUS is used to establish the numerical simulation model of CFRP-lattice aluminum sandwich plates under non-explosive and non-contact underwater explosion load, and its reliability is verified. Single variables are then controlled to analyze the influence of the fiber layer thickness of the upper and lower panels and the rod diameter of the sandwich lattice structure on the energy absorption characteristics and structural deflection of the CFRP-lattice aluminum sandwich plates. Finally, based on the above three design parameters, a surrogate optimization model is established using the experimental design method and numerical simulation methodology to optimize the energy absorption of the CFRP-lattice aluminum sandwich plate structure.   Results  The results show that when the mass of the CFRP-lattice aluminum sandwich plates is constant, the specific absorption of the optimized results can be increased by 284%. In full consideration of the deformation of the lower plates, the specific energy absorption of the optimized results can be increased by 59%.   Conclusions  This study shows that the proposed optimized structure of CFRP-lattice aluminum sandwich plates can effectively improve their energy absorption capacity, and the response surface method is an optimization method that can effectively improve the energy absorption characteristics of the structure.
  • loading
  • [1]
    张阿漫, 王诗平, 汪玉, 等. 水下爆炸对舰船结构损伤特征研究综述[J]. 中国舰船研究, 2011, 6(3): 1–7. doi: 10.3969/j.issn.1673-3185.2011.03.001

    ZHANG A M, WANG S P, WANG Y, et al. Advances in the research of characteristics of warship structural damage due to underwater explosion[J]. Chinese Journal of Ship Research, 2011, 6(3): 1–7 (in Chinese). doi: 10.3969/j.issn.1673-3185.2011.03.001
    [2]
    辛春亮, 秦健, 徐更光, 等. 数值模拟软件在水下爆炸模拟中的应用研究[C]//第四届全国爆炸力学实验技术学术会议. 武夷山: 中国力学学会, 2006.

    XIN C L, QIN J, XU G G, et al. Application of numerical simulation software in underwater explosion simulation[C]//The 4th National Conference on Experimental Technology of Explosion Mechanics. Mount Wuyi: Chinese Society of Mechanics, 2006 (in Chinese).
    [3]
    焦安龙, 贾则, 陈高杰. 基于ABAQUS的近距水下爆炸对舰艇的冲击响应研究[J]. 电子设计工程, 2015, 23(10): 179–181, 185. doi: 10.3969/j.issn.1674-6236.2015.10.053

    JIAO A L, JIA Z, CHEN G J. The research of shock response on warship subjected to a close underwater explosion based on ABAQUS[J]. Electronic Design Engineering, 2015, 23(10): 179–181, 185 (in Chinese). doi: 10.3969/j.issn.1674-6236.2015.10.053
    [4]
    库尔 P. 水下爆炸[M]. 罗耀杰, 韩润泽, 官信, 等译. 北京: 国防工业出版社, 1960.

    COLE P. Underwater explosion[M]. LUO Y J, HAN R Z, GUAN X, et al, trans. Beijing: National Defense Industry Press, 1960 (in Chinese).
    [5]
    GEERS T L. Doubly asymptotic approximations for transient motions of submerged structures[J]. Journal of the Acoustical Society of America, 1978, 64(5): 1500–1508. doi: 10.1121/1.382093
    [6]
    李国华, 李玉节, 张效慈, 等. 浮动冲击平台水下爆炸冲击谱测量与分析[J]. 船舶力学, 2000, 4(2): 51–60.

    LI G H, LI Y J, ZHANG X C, et al. Shock spectrum measurement and analysis of underwater explosion on a floating shock platform[J]. Journal of Ship Mechanics, 2000, 4(2): 51–60 (in Chinese).
    [7]
    BERNAL OSTOS J, RINALDI R G, HAMMETTER C M, et al. Deformation stabilization of lattice structures via foam addition[J]. Acta Materialia, 2012, 60(19): 6476–6485. doi: 10.1016/j.actamat.2012.07.053
    [8]
    姚熊亮, 侯健, 王玉红, 等. 水下爆炸冲击载荷作用时船舶冲击环境仿真[J]. 中国造船, 2003, 44(1): 71–74. doi: 10.3969/j.issn.1000-4882.2003.01.011

    YAO X L, HOU J, WANG Y H, et al. Research on simulation of underwater shock environment of ship[J]. Shipbuilding of China, 2003, 44(1): 71–74 (in Chinese). doi: 10.3969/j.issn.1000-4882.2003.01.011
    [9]
    YU J, LIU G Z, WANG J, et al. An effective method for modeling the load of bubble jet in underwater explosion near the wall[J]. Ocean Engineering, 2021, 220: 108408. doi: 10.1016/j.oceaneng.2020.108408
    [10]
    JIANG X W, ZHANG W, LI D C, et al. Experimental analysis on dynamic response of pre-cracked aluminum plate subjected to underwater explosion shock loadings[J]. Thin-Walled Structures, 2021, 159: 107256. doi: 10.1016/j.tws.2020.107256
    [11]
    WANG X H, ZHANG S R, WANG C, et al. Blast-induced damage and evaluation method of concrete gravity dam subjected to near-field underwater explosion[J]. Engineering Structures, 2020, 209: 109996. doi: 10.1016/j.engstruct.2019.109996
    [12]
    姚熊亮, 王玉红, 史冬岩, 等. 圆筒结构水下爆炸数值实验研究[J]. 哈尔滨工程大学学报, 2002, 23(1): 5–8,36. doi: 10.3969/j.issn.1006-7043.2002.01.002

    YAO X L, WANG Y H, SHI D Y, et al. Numerical experiment on underwater explosion of cylinder[J]. Journal of Harbin Engineering University, 2002, 23(1): 5–8,36 (in Chinese). doi: 10.3969/j.issn.1006-7043.2002.01.002
    [13]
    HUANG C, LIU M B, WANG B, et al. Underwater explosion of slender explosives: directional effects of shock waves and structure responses[J]. International Journal of Impact Engineering, 2019, 130: 266–280. doi: 10.1016/j.ijimpeng.2019.04.018
    [14]
    韩阳. 爆炸载荷及其作用下的舰船结构响应数值模拟[D]. 武汉: 华中科技大学, 2019.

    HAN Y. A numerical simulation of explosion loads and bull response[D]. Wuhan: Huazhong University of Science & Technology, 2019 (in Chinese).
    [15]
    HUANG Z X, ZHANG X, YANG C Y. Experimental and numerical studies on the bending collapse of multi-cell aluminum/CFRP hybrid tubes[J]. Composites Part B: Engineering, 2020, 181: 107527. doi: 10.1016/j.compositesb.2019.107527
    [16]
    艾冬杰. 水下接触及非接触近场爆炸载荷下泡沫铝夹芯板结构失效机理与吸能特性研究[D]. 武汉: 华中科技大学, 2017.

    AI D J. Research on failure mechanism and energy absorption characteristics of sandwich panels with aluminum foam core under contact and non-contact near-field water blast loading[D]. Wuhan: Huazhong University of Science & Technology, 2017 (in Chinese).
    [17]
    ELSAYYED M S A, DAMIANO P. Multiscale model of the effective properties of the octet-truss lattice material[C]//USA: Aiaa/issmo Multidisciplinary Analysis and Optimization Conference, 2008: 847-850.
    [18]
    USHIJIMA K, CANTWELL W J, MINES R A W, et al. An investigation into the compressive properties of stainless steel micro-lattice structures[J]. Journal of Sandwich Structures & Materials, 2011, 13(3): 303–329.
    [19]
    DENARDO N, PINTO M, SHUKLA A. Hydrostatic and shock-initiated instabilities in double-hull composite cylinders[J]. Journal of the Mechanics and Physics of Solids, 2018, 120: 96–116. doi: 10.1016/j.jmps.2017.10.020
    [20]
    ZHANG X, ZHANG H, WANG Z. Bending collapse of square tubes with variable thickness[J]. International Journal of Mechanical Sciences, 2016, 106: 107–116. doi: 10.1016/j.ijmecsci.2015.12.006
    [21]
    张雄. 轻质薄壁结构耐撞性分析与设计优化[D]. 大连: 大连理工大学, 2007.

    ZHANG X. Crashworthiness analysis and design optimization of light thin-walled structures[D]. Dalian: Dalian University of Technology, 2007 (in Chinese).
    [22]
    张志红, 何桢, 郭伟. 在响应曲面方法中三类中心复合设计的比较研究[J]. 沈阳航空工业学院学报, 2007, 24(1): 87–91.

    ZHANG Z H, HE Z, GUO W. A comparative study of three central composite designs in response surface methodology[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2007, 24(1): 87–91 (in Chinese).
    [23]
    MCKAY M D, BECKMAN R J, CONOVER W J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239–245.
    [24]
    DESHPANDE V S, HEAVER A, FLECK N A. An underwater shock simulator[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021-1041.
    [25]
    任鹏. 非药式水下冲击波加载技术及铝合金结构抗冲击特性研究[D]. 武汉: 华中科技大学, 2017.

    REN P. Research on non-explosive underwater shock loading technique and blast resistant properties of aluminium alloy structures[D]. Wuhan: Huazhong University of Science & Technology, 2017 (in Chinese).
    [26]
    LI Y, CHEN Z H, ZHAO T, et al. An experimental study on dynamic response of polyurea coated metal plates under intense underwater impulsive loading[J]. International Journal of Impact Engineering, 2019, 133: 103361. doi: 10.1016/j.ijimpeng.2019.103361
    [27]
    HUANG W, JIA B, ZHANG W, et al. Dynamic failure of clamped metallic circular plates subjected to underwater impulsive loads[J]. International Journal of Impact Engineering, 2016, 94: 96–108. doi: 10.1016/j.ijimpeng.2016.04.006
    [28]
    朱凌雪, 王同银, 朱晓磊. 基于梯度化因子功能梯度点阵夹层结构优化设计[J]. 振动与冲击, 2018, 37(23): 98–103,110.

    ZHU L X, WANG T Y, ZHU L X. Optimization design of a functionally graded lattice sandwich structure based on gradient factor[J]. Journal of Vibration and Shock, 2018, 37(23): 98–103,110 (in Chinese).
  • ZG2503_en.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(8)

    Article Metrics

    Article Views(388) PDF Downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return