Volume 17 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
YU X, HU K Y. Influence of submarine's acceleration and deceleration on wake spectrum characteristics in stratified flow[J]. Chinese Journal of Ship Research, 2022, 17(3): 67–77, 101 doi: 10.19693/j.issn.1673-3185.02490
Citation: YU X, HU K Y. Influence of submarine's acceleration and deceleration on wake spectrum characteristics in stratified flow[J]. Chinese Journal of Ship Research, 2022, 17(3): 67–77, 101 doi: 10.19693/j.issn.1673-3185.02490

Influence of submarine's acceleration and deceleration on wake spectrum characteristics in stratified flow

doi: 10.19693/j.issn.1673-3185.02490
  • Received Date: 2021-08-12
  • Rev Recd Date: 2021-09-09
  • Available Online: 2022-06-09
  • Publish Date: 2022-06-30
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  This paper seeks to grasp the influence of a submarine's acceleration and deceleration on its wake spectrum characteristics in stratified flow, and provide a theoretical basis for submarine stealth.  Methods  The accuracy of CFD technology in simulating the motion of the submerged body making waves on the free surface is first verified, and then analyses are made of the wave-making on the free surface, its convergence and divergence field, and internal wave velocity field under the acceleration and deceleration of a real-scale submarine. By calculating the divergence of the velocity field of the free surface, the influence of submarine acceleration and deceleration on the free surface and jump layer is determined in depth.  Results  The results show that when the submarine is in unsteady motion, the shear wave and scattered wave distribution of the wake field are completely different from those under uniform motion. Combining the wave height and velocity divergence field, the acceleration and deceleration of the submarine causes the free surface convergence and divergence effect.  Conclusions  When the submarine depth and stratification mode are the same, the wake field disturbance, wave height and roughness can be reduced when the submarine decelerates, and the acceleration state can significantly increase the probability of near-field disturbances leading to the detection of the submarine.
  • loading
  • [1]
    马卫状, 丁勇, 李云波, 等. 稳定分层流数值模拟方法及圆球绕流特征研究[J]. 船舶力学, 2020, 24(10): 1278–1287. doi: 10.3969/j.issn.1007-7294.2020.10.006

    MA W Z, DING Y, LI Y B, et al. On the numerical methods of the stable stratified flows and wake characteristics around a sphere[J]. Journal of Ship Mechanics, 2020, 24(10): 1278–1287 (in Chinese). doi: 10.3969/j.issn.1007-7294.2020.10.006
    [2]
    丁勇, 韩盼盼, 段菲, 等. 线性分层流中圆柱绕流数值模拟方法研究[J]. 哈尔滨工程大学学报, 2016, 37(9): 1179–1183.

    DING Y, HAN P P, DUAN F, et al. Numerical study of linearly stratified flow past a cylinder based on a multiphase mixture model[J]. Journal of Harbin Engineering University, 2016, 37(9): 1179–1183 (in Chinese).
    [3]
    丁勇, 段菲, 韩盼盼, 等. 两层流中潜艇运动与诱发内波特征关系研究[J]. 船舶力学, 2016, 20(5): 523–529. doi: 10.3969/j.issn.1007-7294.2016.05.002

    DING Y, DUAN F, HAN P P, et al. Research on the relationship between moving patterns of submerged body and the features of induced internal waves in two layer fluid[J]. Journal of Ship Mechanics, 2016, 20(5): 523–529 (in Chinese). doi: 10.3969/j.issn.1007-7294.2016.05.002
    [4]
    牛明昌, 丁勇, 马卫状, 等. 基于温度异重流模型的连续分层流数值模拟方法研究[J]. 船舶力学, 2017, 21(8): 941–949. doi: 10.3969/j.issn.1007-7294.2017.08.002

    NIU M C, DING Y, MA W Z, et al. Research on the numerical simulation methods of continuously stratified flows based on thermal density current model[J]. Journal of Ship Mechanics, 2017, 21(8): 941–949 (in Chinese). doi: 10.3969/j.issn.1007-7294.2017.08.002
    [5]
    VOROPAYEV S I, FERNANDO H J S. Wakes of maneuvering body in stratified fluids[M]. Progress in Industrial Mathematics at ECMI, Springer, 2010: 261–266.
    [6]
    VOROPAYEV S I, MCEACHERN G B, FERNANDO H J S, et al. Large vortex structures behind a maneuvering body in stratified fluids[J]. Physics of Fluids, 1999, 11(6): 1682–1684. doi: 10.1063/1.870030
    [7]
    王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 7–10.

    WANG F J. Computational fluid dynamics analysis-software of CFD principles and applications[M]. Beijing: Tsinghua University Press, 2004: 7–10 (in Chinese).
    [8]
    李士强, 肖昌润, 曹植珺. 基于STAR-CCM+的潜艇尾流场及水动力数值分析[J]. 中国舰船研究, 2018, 13(S1): 29–35. doi: 10.19693/j.issn.1673-3185.01216

    LI S Q, XIAO C R, CAO Z J. Numerical analysis of wake flow and hydrodynamics for a submarine based on STAR-CCM+[J]. Chinese Journal of Ship Research, 2018, 13(S1): 29–35. doi: 10.19693/j.issn.1673-3185.01216
    [9]
    周智超, 刘永辉, 冷画屏. 水面舰艇防潜作战模拟训练的计算机仿真研究[J]. 计算机仿真, 2002, 19(3): 1–4. doi: 10.3969/j.issn.1006-9348.2002.03.001

    ZHOU Z C, LIU Y H, LENG H P. Research of computer simulation on surface ship anti-submarine defence imitative training[J]. Computer Simulation, 2002, 19(3): 1–4 (in Chinese). doi: 10.3969/j.issn.1006-9348.2002.03.001
    [10]
    陈建华. 舰艇作战模拟理论与实践[M]. 北京: 国防工业出版社, 2002.

    CHEN J H. The theory and practice of naval combat simulation[M]. Beijing: National Defense Industry Press, 2002 (in Chinese).
    [11]
    ALPERS W, HENNINGS I. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar[J]. Journal of Geophysical Research:Oceans, 1984, 89(C6): 10529–10546. doi: 10.1029/JC089iC06p10529
    [12]
    ALPERS W R, ROSS D B, RUFENACH C L. On the detectability of ocean surface waves by real and synthetic aperture radar[J]. Journal of Geophysical Research:Oceans, 1981, 86(C7): 6481–6498. doi: 10.1029/JC086iC07p06481
    [13]
    SHAFFER D A. Surface waves generated by submerged rankine ovoids starting from rest[R]. Washington, DC: David Taylor Model Basin, 1966.
    [14]
    刘金芳, 毛可修, 张晓娟, 等. 中国海密度跃层分布特征概况[J]. 海洋预报, 2013, 30(6): 21–27. doi: 10.11737/j.issn.1003-0239.2013.06.004

    LIU J F, MAO K X, ZHANG X J, et al. The general distribution characteristics of pycnocline of China Sea[J]. Marine Forecasts, 2013, 30(6): 21–27 (in Chinese). doi: 10.11737/j.issn.1003-0239.2013.06.004
    [15]
    江伟, 李培, 高文洋, 等. 西北太平洋密度跃层特征分析[J]. 海洋预报, 2010, 27(2): 15–21. doi: 10.3969/j.issn.1003-0239.2010.02.003

    JIANG W, LI P, GAO W Y, et al. Pycnocline analysis on the Northwest Pacific Ocean[J]. Marine Forecasts, 2010, 27(2): 15–21 (in Chinese). doi: 10.3969/j.issn.1003-0239.2010.02.003
  • ZG2490_en.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article Views(714) PDF Downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return