Citation: | HE P P, LI Z R, ZHANG X W, et al. Influence of subgrid-scale models on cavitation phenomenon around a 3D twisted hydrofoil[J]. Chinese Journal of Ship Research, 2022, 17(3): 187–195 doi: 10.19693/j.issn.1673-3185.02387 |
[1] |
KUBOTA A, KATO H, YAMAGUCHI H, et al. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique[J]. Journal of Fluids Engineering, 1989, 111(2): 204–210. doi: 10.1115/1.3243624
|
[2] |
KJELDSEN M, ARNDT R E A, EFFERTZ M. Spectral characteristics of sheet/cloud cavitation[J]. Journal of Fluids Engineering, 2000, 122(3): 481–487. doi: 10.1115/1.1287854
|
[3] |
FARHAT M, AVELLAN F. On the detachment of a leading edge cavitation[J]. Cerâ mica, 2001, 49(309): 40–43.
|
[4] |
FOETH E J. The structure of three-dimensional sheet cavitation[D]. The Netherlands: Delft University of Technology, 2008.
|
[5] |
LI D Q, GREKULA M, LINDELL P. A modified SST k-ω turbulence model to predict the steady and unsteady sheet cavitation on 2D and 3D hydrofoils[C]//The 7th International Symposium on Cavitation. Ann Arbor, MI, USA: CAV Publishing, 2009: 1-13.
|
[6] |
刘登成, 洪方文. 三维水翼云空泡非定常特性数值分析及试验验证[J]. 水动力学研究与进展, 2010, 25(6): 721–726.
LIU D C; HONG F W. The numerical analysis of unsteady performance of cavitating flow on 3D hydrofoils and comparison with experiments[J]. Chinese Journal of Hydrodynamics, 2010, 25(6): 721–726 (in Chinese).
|
[7] |
LI Z R. Assessment of cavitation erosion with a multiphase reynolds-averaged navier-stokes method[D]. The Netherlands: Delft University of Technology, 2012.
|
[8] |
JI B, LUO X W, ARNDT R E A, et al. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction[J]. Ocean Engineering, 2014, 87: 64–77. doi: 10.1016/j.oceaneng.2014.05.005
|
[9] |
蒲汲君, 熊鹰. 三维水翼梢涡流场数值研究[J]. 中国舰船研究, 2017, 12(1): 8–13,26. doi: 10.3969/j.issn.1673-3185.2017.01.002
PU J J, XIONG Y. Numerical study of hydrofoil tip vortex fluid field[J]. Chinese Journal of Ship Research, 2017, 12(1): 8–13,26 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.01.002
|
[10] |
JI B, LUO X W, ARNDT R E A, et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil[J]. International Journal of Multiphase Flow, 2015, 68: 121–134. doi: 10.1016/j.ijmultiphaseflow.2014.10.008
|
[11] |
WU X C, WANG Y W, HUANG C G. Effect of mesh resolution on large eddy simulation of cloud cavitating flow around a three dimensional twisted hydrofoil[J]. European Journal of Mechanics-B/Fluids, 2016, 55: 229–240. doi: 10.1016/j.euromechflu.2015.09.011
|
[12] |
LONG X P, CHENG H Y, JI B, et al. Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil[J]. International Journal of Multiphase Flow, 2018, 100: 41–56. doi: 10.1016/j.ijmultiphaseflow.2017.12.002
|
[13] |
SUN T Z, WANG Z H, ZOU L, et al. Numerical investigation of positive effects of ventilated cavitation around a NACA66 hydrofoil[J]. Ocean Engineering, 2020, 197: 106831. doi: 10.1016/j.oceaneng.2019.106831
|
[14] |
LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4(3): 633–635. doi: 10.1063/1.858280
|
[15] |
NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183–200. doi: 10.1023/A:1009995426001
|
[16] |
SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638–1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
|
[17] |
COUTIER-DELGOSHA O, REBOUD J L, DELANNOY Y. Numerical simulation of the unsteady behaviour of cavitating flows[J]. International Journal for Numerical Methods in Fluids, 2003, 42(5): 527–548.
|
[18] |
HOEKSTRA M, VAN TERWISGA T, FOETH E J. smp’11 workshop–case 1: delftFoil[C]//2nd International Symposium on Marine Propulsors. Hamburg, Germany: ISMP Publishing, 2011: 1-6.
|
[19] |
BENSOW R E. Simulation of the unsteady cavitation on the Delft Twist11 foil using RANS, DES and LES[C]//2nd International Symposium on Marine Propulsors. Hamburg, Germany: ISMP Publishing, 2011: 1-10.
|
[20] |
VAZ G, LLOYD T P, GNANASUNDARAM A K. Improved modelling of sheet cavitation dynamics on Delft Twist11 hydrofoil[C]//VII International Conference on Computational Methods in Marine Engineering. Nantes, France: ICCMME Publishing, 2017.
|
![]() |
![]() |