Volume 17 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
HE P P, LI Z R, ZHANG X W, et al. Influence of subgrid-scale models on cavitation phenomenon around a 3D twisted hydrofoil[J]. Chinese Journal of Ship Research, 2022, 17(3): 187–195 doi: 10.19693/j.issn.1673-3185.02387
Citation: HE P P, LI Z R, ZHANG X W, et al. Influence of subgrid-scale models on cavitation phenomenon around a 3D twisted hydrofoil[J]. Chinese Journal of Ship Research, 2022, 17(3): 187–195 doi: 10.19693/j.issn.1673-3185.02387

Influence of subgrid-scale models on cavitation phenomenon around a 3D twisted hydrofoil

doi: 10.19693/j.issn.1673-3185.02387
  • Received Date: 2021-05-24
  • Rev Recd Date: 2022-03-03
  • Available Online: 2022-06-09
  • Publish Date: 2022-06-30
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objective  This paper aims to explore the suitability of mesh density and subgrid-scale model for the numerical simulation of three-dimensional twisted hydrofoil.   Methods  The large eddy simulation (LES) method and Schnerr-Sauer (S-S) cavitation model are used to simulate the unsteady cavitation flow of a Delft Twist11N three-dimensional twisted hydrofoil. Three sets of grid with different density and three types of different subgrid-scale models are mainly studied to identify the effects on the Twist11N hydrofoil cavitation evolution process, cavitation shedding frequency and time-averaged lift and drag coefficients.  Results  The results show that appropriate grid refinement can not only capture more unsteady cavitation evolution phenomena such as the shedding of smaller cavities and the inception and collapse of horse-shoe-shaped cloud cavities, but also obtain more exact cavity shedding frequency, time-averaged lift and drag coefficients, and time-averaged pressure distribution. Among the three subgrid-scale models, compared to the algebraic wall-modeled LES model (WMLES) and Smagorinsky-Lilly (SL) model, the wall-adapting local eddy-viscosity (WALE) model better captures the evolution of sheet and cloud cavitation, and has better accuracy in predicting the frequency of cavity shedding,time-averaged lift, drag and pressure coefficients.  Conclusion  It is recommended to adopt the LES method with the WALE subgrid-scale model for the numerical simulation of unsteady cloud cavitation.
  • loading
  • [1]
    KUBOTA A, KATO H, YAMAGUCHI H, et al. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique[J]. Journal of Fluids Engineering, 1989, 111(2): 204–210. doi: 10.1115/1.3243624
    [2]
    KJELDSEN M, ARNDT R E A, EFFERTZ M. Spectral characteristics of sheet/cloud cavitation[J]. Journal of Fluids Engineering, 2000, 122(3): 481–487. doi: 10.1115/1.1287854
    [3]
    FARHAT M, AVELLAN F. On the detachment of a leading edge cavitation[J]. Cerâ mica, 2001, 49(309): 40–43.
    [4]
    FOETH E J. The structure of three-dimensional sheet cavitation[D]. The Netherlands: Delft University of Technology, 2008.
    [5]
    LI D Q, GREKULA M, LINDELL P. A modified SST k-ω turbulence model to predict the steady and unsteady sheet cavitation on 2D and 3D hydrofoils[C]//The 7th International Symposium on Cavitation. Ann Arbor, MI, USA: CAV Publishing, 2009: 1-13.
    [6]
    刘登成, 洪方文. 三维水翼云空泡非定常特性数值分析及试验验证[J]. 水动力学研究与进展, 2010, 25(6): 721–726.

    LIU D C; HONG F W. The numerical analysis of unsteady performance of cavitating flow on 3D hydrofoils and comparison with experiments[J]. Chinese Journal of Hydrodynamics, 2010, 25(6): 721–726 (in Chinese).
    [7]
    LI Z R. Assessment of cavitation erosion with a multiphase reynolds-averaged navier-stokes method[D]. The Netherlands: Delft University of Technology, 2012.
    [8]
    JI B, LUO X W, ARNDT R E A, et al. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction[J]. Ocean Engineering, 2014, 87: 64–77. doi: 10.1016/j.oceaneng.2014.05.005
    [9]
    蒲汲君, 熊鹰. 三维水翼梢涡流场数值研究[J]. 中国舰船研究, 2017, 12(1): 8–13,26. doi: 10.3969/j.issn.1673-3185.2017.01.002

    PU J J, XIONG Y. Numerical study of hydrofoil tip vortex fluid field[J]. Chinese Journal of Ship Research, 2017, 12(1): 8–13,26 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.01.002
    [10]
    JI B, LUO X W, ARNDT R E A, et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil[J]. International Journal of Multiphase Flow, 2015, 68: 121–134. doi: 10.1016/j.ijmultiphaseflow.2014.10.008
    [11]
    WU X C, WANG Y W, HUANG C G. Effect of mesh resolution on large eddy simulation of cloud cavitating flow around a three dimensional twisted hydrofoil[J]. European Journal of Mechanics-B/Fluids, 2016, 55: 229–240. doi: 10.1016/j.euromechflu.2015.09.011
    [12]
    LONG X P, CHENG H Y, JI B, et al. Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil[J]. International Journal of Multiphase Flow, 2018, 100: 41–56. doi: 10.1016/j.ijmultiphaseflow.2017.12.002
    [13]
    SUN T Z, WANG Z H, ZOU L, et al. Numerical investigation of positive effects of ventilated cavitation around a NACA66 hydrofoil[J]. Ocean Engineering, 2020, 197: 106831. doi: 10.1016/j.oceaneng.2019.106831
    [14]
    LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4(3): 633–635. doi: 10.1063/1.858280
    [15]
    NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183–200. doi: 10.1023/A:1009995426001
    [16]
    SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638–1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
    [17]
    COUTIER-DELGOSHA O, REBOUD J L, DELANNOY Y. Numerical simulation of the unsteady behaviour of cavitating flows[J]. International Journal for Numerical Methods in Fluids, 2003, 42(5): 527–548.
    [18]
    HOEKSTRA M, VAN TERWISGA T, FOETH E J. smp’11 workshop–case 1: delftFoil[C]//2nd International Symposium on Marine Propulsors. Hamburg, Germany: ISMP Publishing, 2011: 1-6.
    [19]
    BENSOW R E. Simulation of the unsteady cavitation on the Delft Twist11 foil using RANS, DES and LES[C]//2nd International Symposium on Marine Propulsors. Hamburg, Germany: ISMP Publishing, 2011: 1-10.
    [20]
    VAZ G, LLOYD T P, GNANASUNDARAM A K. Improved modelling of sheet cavitation dynamics on Delft Twist11 hydrofoil[C]//VII International Conference on Computational Methods in Marine Engineering. Nantes, France: ICCMME Publishing, 2017.
  • ZG2387_en.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article Views(343) PDF Downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return