Citation: | DU Z F, MU X L, LI Z J. Numerical analysis of influence of stern flaps on motion and stability of high-speed amphibious platform[J]. Chinese Journal of Ship Research, 2022, 17(3): 85–92 doi: 10.19693/j.issn.1673-3185.02331 |
[1] |
居乃鵕. 两栖车辆水动力学分析与仿真[M]. 北京: 兵器工业出版社, 2005: 386-421.
JU N J. Hydrodynamics analysis and simulation for amphibious vehicle[M]. Beijing: The Publishing House of Ordnance Industry, 2005: 386-421 (in Chinese).
|
[2] |
余祖耀, 廖远才, 李锦云, 等. 滑板角度组合对两栖车辆升阻比影响的仿真研究[J]. 船舶工程, 2015, 37(3): 26–29.
YU Z Y, LIAO Y C, LI J Y, et al. Simulation analysis of effect of different skateboard angles on lift-drag ratio of amphibious vehicle[J]. Ship Engineering, 2015, 37(3): 26–29 (in Chinese).
|
[3] |
MAIMUN A, NAKISA M, TARMIZI A, et al. Numerical study on hydrodynamic resistance of new hull design for multipurpose amphibious vehicle[J]. Applied Mechanics and Materials, 2014, 663: 522–531. doi: 10.4028/www.scientific.net/AMM.663.522
|
[4] |
NAKISA M, MAIMUN A, AHMED Y M, et al. Numerical estimation of shallow water effect on multipurpose amphibious vehicle resistance[J]. Journal of Naval Architecture and Marine Engineering, 2017, 14(1): 1–8. doi: 10.3329/jname.v14i1.26523
|
[5] |
凌宏杰, 王志东. 高速滑行艇“海豚运动”现象的实时数值预报方法[J]. 上海交通大学学报, 2014, 48(1): 106–110.
LING H J, WANG Z D. Real-time numerical prediction method of “Dolphin Motion” high-speed planning craft[J]. Journal of Shanghai Jiaotong University, 2014, 48(1): 106–110 (in Chinese).
|
[6] |
MANSOORI M, FERNANDES A C. The interceptor hydrodynamic analysis for controlling the porpoising instability in high speed crafts[J]. Applied Ocean Research, 2016, 57: 40–51. doi: 10.1016/j.apor.2016.02.006
|
[7] |
SAKAKI A, GHASSEMI H, KEYVANI S. Evaluation of the hydrodynamic performance of planing boat with trim tab and interceptor and its optimization using genetic algorithm[J]. Journal of Marine Science and Application, 2019, 18(2): 131–141. doi: 10.1007/s11804-018-0040-6
|
[8] |
李冬琴, 李鹏, 章易立, 等. 分段式尾压浪板对高速船阻力性能的影响[J]. 船舶工程, 2019, 41(7): 37–43.
LI D Q, LI P, ZHANG Y L, et al. Influence of segmented stern flap on resistance performance of high speed craft[J]. Ship Engineering, 2019, 41(7): 37–43 (in Chinese).
|
[9] |
孙一方, 宗智, 姜宜辰. 船舶在波浪上纵向运动与控制研究综述[J]. 中国舰船研究, 2020, 15(1): 1–12, 47.
SUN Y F, ZONG Z, JIANG Y C. Review of longitudinal motion and controls of ships on waves[J]. Chinese Journal of Ship Research, 2020, 15(1): 1–12, 47 (in Chinese).
|
[10] |
LEE S J, LEE T I, LEE J J, et al. Hydrodynamic characteristics of a hydrofoil-assisted amphibious vehicle[J]. Journal of Ship Research, 2017, 61: 15–22. doi: 10.5957/jsr.2017.61.1.15
|
[11] |
王少新, 金国庆, 王涵, 等. 双车厢两栖车静水直航下的水动力性能研究[J]. 兵工学报, 2020, 41(3): 434–441. doi: 10.3969/j.issn.1000-1093.2020.03.003
WANG S X, JIN G Q, WANG H, et al. Research on the hydrodynamic performance of a double-carriage amphibious vehicle sailing in still water[J]. Acta Armamentarii, 2020, 41(3): 434–441 (in Chinese). doi: 10.3969/j.issn.1000-1093.2020.03.003
|
[12] |
贾敬蓓, 宗智, 金国庆, 等. 航行姿态对半滑行三体船型静水阻力影响的数值研究[J]. 中国舰船研究, 2020, 15(6): 106–114.
JIA J B, ZONG Z, JIN G Q, et al. A numerical investigation of sinkage and trim effects on the resistance of trimaran hull form in calm water[J]. Chinese Journal of Ship Research, 2020, 15(6): 106–114 (in Chinese).
|
[13] |
JAVANMARD E, YARI E, MEHR J A, et al. Hydrodynamic characteristic curves and behavior of flow around a surface-piercing propeller using computational fluid dynamics based on FVM[J]. Ocean Engineering, 2019, 192: 106445. doi: 10.1016/j.oceaneng.2019.106445
|
[14] |
VASHAHI F, DAFSARI R A, REZAEI S, et al. Assessment of steady VOF RANS turbulence models in rendering the internal flow structure of pressure swirl nozzles[J]. Fluid Dynamics Research, 2019, 51(4): 045506. doi: 10.1088/1873-7005/ab2546
|
[15] |
LEE E, WEIL C R, FULLERTON A. Experimental results for the calm water resistance of the generic prismatic planing hull (GPPH) : NSWCCD-80-TR-2017/015[R]. Naval Surface Warfare Center Carderock Division, 2017.
|
[16] |
LI J H, BONFIGLIO L, BRIZZOLARA S. Verification and validation study of openfoam on the generic prismatic planing hull form[C]//MARINE VIII: Proceedings of the VIII International Conference on Computational Methods in Marine Engineering. CIMNE, 2019: 428-440.
|
[17] |
WEI H X, CHEN J F, ZHU J, et al. A new zoning method of blasting vibration based on energy proportion and its SVM classification models[J]. Shock and Vibration, 2021, 2021: 6697682.
|
![]() |
![]() |