Volume 17 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
LEI Z Y, WANG C X, WU C J, et al. Underwater online dynamic strain test of CFRP propeller with embedded FBG sensors[J]. Chinese Journal of Ship Research, 2022, 17(2): 183–189, 205 doi: 10.19693/j.issn.1673-3185.02323
Citation: LEI Z Y, WANG C X, WU C J, et al. Underwater online dynamic strain test of CFRP propeller with embedded FBG sensors[J]. Chinese Journal of Ship Research, 2022, 17(2): 183–189, 205 doi: 10.19693/j.issn.1673-3185.02323

Underwater online dynamic strain test of CFRP propeller with embedded FBG sensors

doi: 10.19693/j.issn.1673-3185.02323
  • Received Date: 2021-03-18
  • Rev Recd Date: 2021-05-22
  • Available Online: 2022-03-31
  • Publish Date: 2022-04-20
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objective  The carbon fiber reinforced plastic (CFRP) propeller has such advantages as light weight, high strength, low vibration, low noise, corrosion resistance and fatigue resistance. In order to accurately ascertain the deformation and strain of CFRP propeller blades under hydrodynamic load, this paper proposes an online measurement method for CFRP propeller dynamic strain under submerged operation conditions.  Method  Fiber bragg grating (FBG) sensors are embedded in a CFRP propeller, and an underwater dynamic strain test system is built. Two types of test conditions are set: (1) the velocity is 0 m/s, and the rotation speed increases from 50 to 400 r/min; and (2) the rotation speed is 427 r/min, and the velocity increases from 0.0 to 1.6 m/s. The dynamic strain data of the CFRP propeller under the above conditions is obtained by the FBG sensors and analyzed in the time and spectrum domains.  Results  The results show that, the dynamic strain frequencies of each FBG sensor on the CFRP propeller are the same and related to the rotation speed, while the dynamic strain amplitude of each FBG sensor has no obvious relationship with the rotation speed or velocity, but depends on the position of the sensor, which reflects the structural mechanics features of the propeller.  Conclusion  The underwater online dynamic strain test of the CFRP propeller is realized, and test results are reasonable and reliable. This provides an important empirical basis for the theoretical design and analysis of the CFRP propeller, which is of great significance for the study of its vibration noise and hydrodynamic performance.
  • loading
  • [1]
    洪毅. 高性能复合材料螺旋桨的结构设计及水弹性优化[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    HONG Y. Structure design and hydroelastic optimization of high performance composite propeller[D]. Harbin: Harbin Institute of Technology, 2011 (in Chinese).
    骆海民, 洪毅, 魏康军, 等. 复合材料螺旋桨的应用、研究及发展[J]. 纤维复合材料, 2012(1): 3–6. doi: 10.3969/j.issn.1003-6423.2012.01.001

    LUO H M, HONG Y, WEI K J, et al. The application and study and development of composite propeller[J]. Fiber Composites, 2012(1): 3–6 (in Chinese). doi: 10.3969/j.issn.1003-6423.2012.01.001
    张帅, 朱锡, 孙海涛, 等. 船用复合材料螺旋桨研究进展[J]. 力学进展, 2012, 42(5): 620–633. doi: 10.6052/1000-0992-11-147

    ZHANG S, ZHU X, SUN H T, et al. Review of researches on composite marine ropellers[J]. Advances in Mechanics, 2012, 42(5): 620–633 (in Chinese). doi: 10.6052/1000-0992-11-147
    张旭婷, 洪毅, 袁凤, 等. 复合材料螺旋桨流固耦合分析方法的发展和研究现状[J]. 玻璃钢/复合材料, 2016(6): 84–87.

    ZHANG X T, HONG Y, YUAN F, et al. The development and research of fluid-structure interaction for composite propeller[J]. Fiber Reinforced Plastics/Composites, 2016(6): 84–87 (in Chinese).
    黄政, 熊鹰, 杨光. 复合材料螺旋桨模型的应变模态与振动特性[J]. 中国舰船研究, 2016, 11(2): 98–105. doi: 10.3969/j.issn.1673-3185.2016.02.013

    HUANG Z, XIONG Y, YANG G. Composite propeller's strain modal and structural vibration performance[J]. Chinese Journal of Ship Research, 2016, 11(2): 98–105 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.02.013
    闫美佳. 基于光纤光栅的结构变形监测方法研究[D]. 南京: 南京航空航天大学, 2015.

    YAN M J. Research on structural deformation monitoring method based on fiber bragg grating[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese).
    ZETTERLIND III V E, WATKINS S E, SPOLTMAN M W. Feasibility study of embedded fiber optic strain sensing for composite propeller blades[C]//SPIE's 8th Annual International Symposium on Smart Structures and Materials. Newport Beach, CA, United States: SPIE, 2001, 4332: 143-152.
    ZETTERLIND V E, WATKINS S E, SPOLTMAN M W. Fatigue testing of a composite propeller blade using fiber-optic strain sensors[J]. IEEE Sensors Journal, 2003, 3(4): 393–399. doi: 10.1109/JSEN.2003.815795
    WOZNIAK C D. Analysis, fabrication, and testing of a composite bladed propeller for a naval academy yard patrol (YP) craft[R]. Annapolis: Naval Academy, 2005.
    HERATH M T, PRUSTY B G, YEOH G H, et al. Development of a shape-adaptive composite propeller using bend-twist coupling characteristics of composites[C]//Proceedings of the Third International Symposium on Marine Propulsors. Tasmania, Australia: ISMP, 2013: 128−135.
    JAVDANI S, FABIAN M, AMS M, et al. Fiber bragg grating-based system for 2-D analysis of vibrational modes of a steel propeller blade[J]. Journal of Lightwave Technology, 2014, 32(23): 3991–3997.
    JAVDANI S, FABIAN M, CARLTON J S, et al. Underwater free-vibration analysis of full-scale marine propeller using a fiber bragg grating-based sensor system[J]. IEEE Sensors Journal, 2016, 16(4): 946–953. doi: 10.1109/JSEN.2015.2490478
  • ZG2323_en.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article Views(500) PDF Downloads(52) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint