Volume 16 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
XIE W, TAO H, GONG J B, et al. Research advances in the development status and key technology of unmanned marine vehicle swarm operation[J]. Chinese Journal of Ship Research, 2021, 16(1): 7–17, 31 doi: 10.19693/j.issn.1673-3185.02225
Citation: XIE W, TAO H, GONG J B, et al. Research advances in the development status and key technology of unmanned marine vehicle swarm operation[J]. Chinese Journal of Ship Research, 2021, 16(1): 7–17, 31 doi: 10.19693/j.issn.1673-3185.02225

Research advances in the development status and key technology of unmanned marine vehicle swarm operation

doi: 10.19693/j.issn.1673-3185.02225
  • Received Date: 2020-12-16
  • Rev Recd Date: 2021-01-07
  • Available Online: 2021-02-05
  • Publish Date: 2021-02-28
    © 2021 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • The swarm operation of unmanned marine vehicle (UMV) has been developed and evolved from concept to practical application. In view of the mission requirements of UMV swarms, this paper summarizes the development of the UMV swarm concepts of unmanned aerial vehicle (UAV), unmanned surface vehicle (USV) and unmanned underwater vehicle (UUV), and cross-domain swarm operations of UMV in naval warfare. It then analyzes the key technologies of UMV swarm cooperative engagement, including self-organizing communication, collaborative situational awareness, tasking, path planning, formation control and virtual testing. Finally, the main research ideas, representative algorithms and development trends of the related algorithms are summarized systematically. This study can provide valuable references for research on UMV swarm operation technology.
  • loading
  • [1]
    邹立岩, 张明智, 荣明. 智能无人机集群概念及主要发展趋势分析[J]. 战术导弹技术, 2019(5): 1–11, 43.

    ZOU L Y, ZHANG M Z, RONG M. Analysis of intelligent unmanned aircraft systems swarm concept and main development trend[J]. Tactical Missile Technology, 2019(5): 1–11, 43 (in Chinese).
    [2]
    董晓明. 海上无人装备体系概览[M]. 哈尔滨: 哈尔滨工程大学出版社, 2020.

    DONG X M. Introduction to martime unmanned systems[M]. Harbin: Harbin Engineering University Press, 2020 (in Chinese).
    [3]
    张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(2): 289–297.

    ZHANG W, WANG N X, WEI S L, et al. Overview of unmanned underwater vehicle swarm development status and key technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289–297 (in Chinese).
    [4]
    王宇, 郭兴旺. 无人系统集群海上作战应用研究[J]. 舰船电子工程, 2019, 39(12): 21–25.

    WANG Y, GUO X W. Research on the application of unmanned system cluster in marine combat applications[J]. Ship Electronic Engineering, 2019, 39(12): 21–25 (in Chinese).
    [5]
    SHANEN SHAH A F M, ILHAN H, TURELI U. CB-MAC: a novel cluster-based MAC protocol for VANETs[J]. IET Intelligent Transport Systems, 2019, 13(4): 587–595. doi: 10.1049/iet-its.2018.5267
    [6]
    JAVADI M, MOSTAFAEI H, CHOWDHURRY M U, et al. Learning automaton based topology control protocol for extending wireless sensor networks lifetime[J/OL]. Journal of Network and Computer Applications, 2018, 122: 128–136.
    [7]
    XU W, DANESHMAND, LIU W. A data privacy protective mechanism for WBAN[J/OL]. Wireless Communications and Mobile Computing, 2015: 421–430. https://doi.org/10.1002/wcm.
    [8]
    GUI J S, ZHOU K. Flexible adjustments between energy and capacity for topology control in heterogeneous wireless multi-hop networks[J]. Journal of Network and Systems Management, 2016, 24(4): 789–812. doi: 10.1007/s10922-016-9367-y
    [9]
    WAQAS A, MAHMOOD H, ZARIFZADEH S. A data privacy protective mechanism for WBAN[J]. Computer Networks, 2019, 3819(4): 24–30.
    [10]
    HAYAT S, YANMAZ E, MUZAFFAR R. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2624–2661.
    [11]
    何友, 姚力波. 天基海洋目标信息感知与融合技术研究[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1530–1536.

    HE Y, YAO L B. Space-based sea target information awareness and fusion[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1530–1536 (in Chinese).
    [12]
    高杨, 李东生, 程泽新. 无人机分布式集群态势感知模型研究[J]. 电子与信息学报, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877

    GAO Y, LI D S, CHENG Z X. UAV distributed swarm situation awareness model[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1271–1278 (in Chinese). doi: 10.11999/JEIT170877
    [13]
    崔玮. 改进的D-S证据理论在海上目标融合识别模型中的应用[J]. 舰船科学技术, 2017, 39(8): 109–111.

    CUI W. The application of improved D-S proof theory in the model of sea target fusion recognition[J]. Ship Science and Technology, 2017, 39(8): 109–111 (in Chinese).
    [14]
    张悦. 多USV协同定位数据融合技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    ZHANG Y. Research on multi USV cooperative positioning data fusion technology[D]. Harbin: Harbin University of Technology, 2018 (in Chinese).
    [15]
    WANG Q Y, CUI X F, LI Y B, et al. Performance enhancement of a USV INS/CNS/DVL integration navigation system based on an adaptive information sharing factor federated filter[J]. Sensors, 2017, 17(2): 239. doi: 10.3390/s17020239
    [16]
    XIAO F Y. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy[J]. Information Fusion, 2019, 46: 23–32. doi: 10.1016/j.inffus.2018.04.003
    [17]
    荣健, 乔文钊. 基于模糊神经系统的多传感器数据融合算法[J]. 电子科技大学学报, 2010, 39(3): 376–378, 424. doi: 10.3969/j.issn.1001-0548.2010.03.011

    RONG J, QIAO W Z. Neural-fuzzy-based multisensor data fusion architecture[J]. Journal of University of Electronic Science and Technology of China, 2010, 39(3): 376–378, 424 (in Chinese). doi: 10.3969/j.issn.1001-0548.2010.03.011
    [18]
    张雨浓, 杨逸文, 肖秀春, 等. 样条神经网络的权值直接确定法[J]. 系统工程与电子技术, 2009, 31(11): 2685–2688.

    ZHANG Y N, YANG Y W, XIAO X C, et al. Weights direct determination of a spline neural network[J]. Systems Engineering and Electronics, 2009, 31(11): 2685–2688 (in Chinese).
    [19]
    郭继峰, 郑红星, 贾涛, 等. 异构无人系统协同作战关键技术综述[J]. 宇航学报, 2020, 41(6): 686–696.

    GUO J F, ZHENG H X, JIA T, et al. Summary of key technologies for heterogeneous unmanned system cooperative operations[J]. Journal of Astronautics, 2020, 41(6): 686–696 (in Chinese).
    [20]
    AN S, KIM H J. Simultaneous task assignment and path planning using mixed-integer linear programming and potential field method[C]//2013 13th International Conference on Control, Automation and Systems (ICCAS 2013). Gwangju, South Korea: IEEE, 2014.
    [21]
    ZHU D Q, HUANG H, YANG S X. Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace[J]. IEEE Transactions on Cybernetics, 2013, 43(2): 504–514. doi: 10.1109/TSMCB.2012.2210212
    [22]
    LEVCHUK G M, LEVCHUK Y N, MEIRINA C, et al. Normative design of project-based organizations-part III: modeling congruent, robust, and adaptive organizations[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2004, 34(3): 337–350. doi: 10.1109/TSMCA.2003.822268
    [23]
    HOANG P D, RABAEY J M. Scheduling of DSP programs onto multiprocessors for maximum throughput[J]. IEEE Transactions on Signal Processing, 1993, 41(6): 2225–2235. doi: 10.1109/78.218149
    [24]
    刘华罡, 方浩, 毛昱天, 等. 多智能体系统分布式群集运动与避障控制[C]//第二十九届中国控制会议论文集. 北京: 中国自动化学会, 2010: 4536-4541.

    LIU H G, FANG H, MAO Y T, et al. Distributed flocking control and obstacle avoidance for multi-agent systems[C]//Proceedings of the 29th Chinese Control Conference. Beijing: Chinese Association of Automation, 2010: 4536-4541 (in Chinese).
    [25]
    王训, 王兆魁, 张育林. 基于合作博弈的智能集群自主聚集策略[J]. 国防科技大学学报, 2017, 39(2): 146–151. doi: 10.11887/j.cn.201702022

    WANG X, WANG Z K, ZHANG Y L. Strategy about autonomous aggregation of intelligent swarm based on cooperative game[J]. Journal of national university of defense technology, 2017, 39(2): 146–151 (in Chinese). doi: 10.11887/j.cn.201702022
    [26]
    HAKSAR R N, SCHWAGER M. Distributed deep reinforcement learning for fighting forest fires with a network of aerial robots[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018.
    [27]
    HU J, XIE L, LUM K Y, et al. Multiagent information fusion and cooperative control in target search[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1223–1235. doi: 10.1109/TCST.2012.2198650
    [28]
    JIN Y N, WU Y X, FAN N J. Research on distributed cooperative control of swarm UAVs for persistent coverage[C]//Proceedings of the 33rd Chinese Control Conference. Nanjing, China: IEEE, 2014.
    [29]
    SMITH R G. The contract net protocol: high-level communication and control in a distributed problem solver[J]. IEEE Transactions on Computers, 1980, C-29(12): 1104–1113. doi: 10.1109/TC.1980.1675516
    [30]
    FU X W, FENG P, GAO X G. Swarm UAVs task and resource dynamic assignment algorithm based on task sequence mechanism[J]. IEEE Access, 2019, 7: 41090–41100. doi: 10.1109/ACCESS.2019.2907544
    [31]
    HUNT S, MENG Q, HINDE C J. An extension of the consensus-based bundle algorithm for multi-agent tasks with task based requirements[C]//2012 11th International Conference on Machine Learning and Applications. Boca Raton, FL, USA: IEEE, 2013.
    [32]
    SHANMUGAVEL M, TSOURDOS A, WHITE B, et al. Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs[J]. Control Engineering Practice, 2010, 18(9): 1084–1092. doi: 10.1016/j.conengprac.2009.02.010
    [33]
    LIU J, HE Y F, ZHANG A P. An improved mutli-ACS algorithm for the waste collection vehicle arc routing problem with turn constraints[C]//2014 Tenth International Conference on Computational Intelligence and Security. Kunming, China: IEEE, 2015.
    [34]
    ARI I, AKSAKALLI V, AYDOĞDU V, et al. Optimal ship navigation with safety distance and realistic turn constraints[J]. European Journal of Operational Research, 2013, 229(3): 707–717. doi: 10.1016/j.ejor.2013.03.022
    [35]
    KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. International Journal of Robotics Research, 1986, 5(1): 90–98. doi: 10.1177/027836498600500106
    [36]
    EDISON E, SHIMA T. Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms[J]. Computers & Operations Research, 2011, 38(1): 340–356.
    [37]
    NIKOLOS I K, VALAVANIS K P, TSOURVELOUDIS N C, et al. Evolutionary algorithm based offline/online path planner for UAV navigation[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(6): 898–912. doi: 10.1109/TSMCB.2002.804370
    [38]
    BRINTAKI A N, NIKOLOS I K. Coordinated UAV path planning using differential evolution[J]. Operational Research, 2005, 5(3): 487–502. doi: 10.1007/BF02941133
    [39]
    MITTAL S, DEB K. Three-dimensional offline path planning for UAVs using multiobjective evolutionary algorithms[C]//2007 IEEE Congress on Evolutionary Computation. Singapore: IEEE, 2007.
    [40]
    ÖZALP N, SAHINGOZ O K. Optimal UAV path planning in a 3D threat environment by using parallel evolutionary algorithms[C]//2013 International Conference on Unmanned Aircraft Systems (ICUAS). Atlanta, GA, USA: IEEE, 2013: 49-57.
    [41]
    SHEN X N. A quantum evolutionary algorithm for robot path planning in dynamic environment[C]//Proceedings of the 32nd Chinese Control Conference. Xi'an, China: IEEE, 2013.
    [42]
    CHENG Z, SUN Y, LIU Y L. Path planning based on immune genetic algorithm for UAV[C]//2011 International Conference on Electric Information and Control Engineering. Wuhan, China: IEEE, 2011.
    [43]
    HASIRCIOGLU I, TOPCUOGLU H R, ERMIS M. 3-D path planning for the navigation of unmanned aerial vehicles by using evolutionary algorithms[C]//Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. Atlanta, GA, USA: ACM, 2008.
    [44]
    AL-SABBAN W H, GONZALEZ L F, SMITH R N. Wind-energy based path planning for unmanned aerial vehicles using Markov decision processes[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013.
    [45]
    RAGI S, CHONG E K P. UAV path planning in a dynamic environment via partially observable Markov decision process[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2397–2412. doi: 10.1109/TAES.2013.6621824
    [46]
    FEYZABADI S, CARPIN S. Risk-aware path planning using hirerachical constrained markov decision processes[C]//2014 IEEE International Conference on Automation Science and Engineering (CASE). Taipei, Taiwan, China: IEEE, 2014.
    [47]
    ZHANG B C, MAO Z L, LIU W Q, et al. Geometric reinforcement learning for path planning of UAVs[J]. Journal of Intelligent & Robotic Systems, 2015, 77(2): 391–409.
    [48]
    YANG H Y, GUO Q, XU X, et al. Self-learning PD algorithms based on approximate dynamic programming for robot motion planning[C]//2014 International Joint Conference on Neural Networks (IJCNN). Beijing, China: IEEE, 2014.
    [49]
    KONAR A, CHAKRABORTY I G, SINGH S J, et al. A deterministic improved Q-learning for path planning of a mobile robot[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(5): 1141–1153. doi: 10.1109/TSMCA.2012.2227719
    [50]
    ASL S V, DAVARZANI Z, STAJI S. Planning flying robot navigation in a three-dimensional space by optimaztion combining Q-learning and Monte Carlo algorithms[J]. International Journal of Hybrid Information Technology, 2015, 8(11): 297–306. doi: 10.14257/ijhit.2015.8.11.25
    [51]
    JI Z J, WANG Z D, LIN H, et al. Interconnection topologies for multi-agent coordination under leader-follower framework[J]. Automatica, 2009, 45(12): 2857–2863. doi: 10.1016/j.automatica.2009.09.002
    [52]
    XIAO H Z, CHEN C L P. Leader-follower consensus multi-robot formation control using neurodynamic-optimization-based nonlinear model predictive control[J]. IEEE Access, 2019, 7: 43581–43590. doi: 10.1109/ACCESS.2019.2907960
    [53]
    LAWTON J R T, BEARD R W, YOUNG B J. A decentralized approach to formation maneuvers[J]. IEEE Transactions on Robotics & Automation, 2004, 19(6): 933–941.
    [54]
    JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control, 2003, 48(6): 988–1001. doi: 10.1109/TAC.2003.812781
    [55]
    刘鸿福, 苏炯铭, 付雅晶. 无人系统集群及其对抗技术研究综述[J]. 飞航导弹, 2018(11): 35–40, 91.

    LIU H F, SU J M, FU Y J. A summary of the research on unmanned system clusters and their adversity techniques[J]. Aerodynamic Missile Journal, 2018(11): 35–40, 91 (in Chinese).
    [56]
    安梅岩, 王兆魁, 张育林. 人工智能集群控制演示验证系统[J]. 机器人, 2016, 38(3): 265–275.

    AN M Y, WANG Z K, ZHANG Y L. Demonstration and verification system for artificial intelligent swarm control[J]. Robot, 2016, 38(3): 265–275 (in Chinese).
    [57]
    DO K D, PAN J. Nonlinear formation control of unicycle-type mobile robots[J]. Robotics and Autonomous Systems, 2007, 55(3): 191–204. doi: 10.1016/j.robot.2006.09.001
    [58]
    RAMAZANI S, SELMIC R, DE QUEIROZ M. Rigidity-based multiagent layered formation control[J]. IEEE Transactions on Cybernetics, 2017, 47(8): 1902–1913. doi: 10.1109/TCYB.2016.2568164
    [59]
    ZHOU D J, WANG Z J, SCHWAGER M. Agile coordination and assistive collision avoidance for quadrotor swarms using virtual structures[J]. IEEE Transactions on Robotics, 2018, 34(4): 916–923. doi: 10.1109/TRO.2018.2857477
    [60]
    相晓嘉, 闫超, 王菖, 等. 基于深度强化学习的固定翼无人机编队协调控制方法[J/OL]. 航空学报, 2019: 40(X): 1–14. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2020.24009.

    XIANG X J, YAN C, WANG C, et al. Towards coordination control for fixed-wing UAV formation through deep reinforcement learning[J/OL]. Acta Aeronautica et Astronautica Sinica (in Chinese). http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2020.24009.
    [61]
    LIU H, MENG Q Y, PENG F C, et al. Heterogeneous formation control of multiple UAVs with limited-input leader via reinforcement learning[J]. Neurocomputing, 2020, 412: 63–71. doi: 10.1016/j.neucom.2020.06.040
    [62]
    LA H M, SHENG W H. Distributed sensor fusion for scalar field mapping using mobile sensor networks[J]. IEEE Transactions on Cybernetics, 2013, 43(2): 766–778. doi: 10.1109/TSMCB.2012.2215919
    [63]
    王飞跃, 刘德荣, 熊刚, 等. 复杂系统的平行控制理论及应用[J]. 复杂系统与复杂性科学, 2012, 9(3): 1–12. doi: 10.3969/j.issn.1672-3813.2012.03.001

    WANG F Y, LIU D R, XIONG G, et al. Parallel control theory of complex systems and applications[J]. Complex Systems and Complexity Science, 2012, 9(3): 1–12 (in Chinese). doi: 10.3969/j.issn.1672-3813.2012.03.001
    [64]
    LI L, WANG X, WANG K F, et al. Parallel testing of vehicle intelligence via virtual-real interaction[J]. Science Robotics, 2019, 4(28): eaaw4106. doi: 10.1126/scirobotics.aaw4106
    [65]
    朱冰, 张培兴, 赵健, 等. 基于场景的自动驾驶汽车虚拟测试研究进展[J]. 中国公路学报, 2019, 32(6): 1–19.

    ZHU B, ZHANG P X, ZHAO J, et al. Advances in virtual testing of self-driving cars based on scenarios[J]. China Journal of Highway Science, 2019, 32(6): 1–19 (in Chinese).
    [66]
    KANG Y, YIN H, BERGER C. Test your self-driving algorithm: an overview of publicly available driving datasets and virtual testing environments[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(2): 171–185. doi: 10.1109/TIV.2018.2886678
    [67]
    范云生, 苏辉, 王国峰. 无人水面艇自主航行能力测试技术与应用[J]. 大连海事大学学报, 2020, 46(3): 38–49.

    FAN Y S, SU H, WANG G F. Testing technology and its application of autonomous navigation ability for unmanned surface vehicle[J]. Journal of Dalian Maritime University, 2020, 46(3): 38–49 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (1559) PDF downloads(577) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return