Citation: | HU X Q, HUANG Z, LIU Z H. Numerical analysis on bending-torsional coupling stiffness characteristics of composite propeller[J]. Chinese Journal of Ship Research, 2022, 17(1): 25–35 doi: 10.19693/j.issn.1673-3185.02224 |
[1] |
牛磊, 孙鹏文, 曹婧华, 等. 基于一阶响应面法的铺层参数对叶片性能的耦合影响分析[J]. 内蒙古工业大学学报 (自然科学版), 2018, 37(2): 119–124.
NIU L, SUN P W, CAO J H, et al. Coupling effect analysis of laminating parameters on blade property based on the first-order response surface method[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2018, 37(2): 119–124 (in Chinese).
|
[2] |
吴鹏辉, 孙鹏文. 铺层参数对风力机叶片刚度的耦合影响分析[J]. 内蒙古工业大学学报(自然科学版), 2019, 38(2): 110–114.
WU P H, SUN P W. Coupling influence analysis of ply parameters to the stiffness of wind turbine blade[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2019, 38(2): 110–114 (in Chinese).
|
[3] |
洪毅. 高性能复合材料螺旋桨的结构设计及水弹性优化[D]. 哈尔滨: 哈尔滨工业大学, 2011.
HONG Y. Structure design and hydroelastic optimization of high performance composite propeller[D]. Harbin: Harbin Engineering University, 2011 (in Chinese).
|
[4] |
王子文. 大型风力机叶片弯扭耦合特性研究及轻量化设计[D]. 武汉: 华中科技大学, 2019.
WANG Z W. Research on bend-twist coupling characteristics and lightweight design of large wind turbine blade[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
|
[5] |
贺伟. 船用复合材料螺旋桨水弹性分析与设计方法研究[D]. 武汉: 武汉理工大学, 2015.
HE W. Research on hydroelastic analysis and design of composite marine propellers[D]. Wuhan: Wuhan University of Technology, 2015 (in Chinese).
|
[6] |
苏军, 安中彦, 于云飞, 等. 发动机叶片扭转和弯曲变形同步测量新方法[J]. 实验力学, 2017, 32(2): 279–285. doi: 10.7520/1001-4888-16-017
SU J, AN Z Y, YU Y F, et al. A new synchronous measurement method for torsion and bending deformation of engine blade[J]. Journal of Experimental Mechanics, 2017, 32(2): 279–285 (in Chinese). doi: 10.7520/1001-4888-16-017
|
[7] |
叶礼裕, 王超, 孙帅, 等. 基于悬臂梁法和面元法耦合的桨叶应力分布预报[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(5): 968–973.
YE L Y, WANG C, SUN S, et al. Prediction of blade stress distribution based on cantilever beam method and penal method[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2015, 39(5): 968–973 (in Chinese).
|
[8] |
谭廷寿. 非均匀流场中螺旋桨性能预报和理论设计研究[D]. 武汉: 武汉理工大学, 2003.
TAN T S. Performance prediction and theoretical design research on propeller in non-uniform flow[D]. Wuhan: Wuhan University of Technology, 2003 (in Chinese).
|
[9] |
徐欣伟. 螺旋桨的设计及性能预报与软件实现[D]. 武汉: 华中科技大学, 2011.
XU X W. Design and prediction performance of propeller and its realization in software[D]. Wuhan: Huazhong University of Science and Technology, 2011 (in Chinese).
|
[10] |
YOUNG Y L. Fluid–structure interaction analysis of flexible composite marine propellers[J]. Journal of Fluids and Structures, 2008, 24(6): 799–818. doi: 10.1016/j.jfluidstructs.2007.12.010
|
[11] |
YOUNG Y L, BAKER J W, MOTLEY M R. Reliability-based design and optimization of adaptive marine structures[J]. Composite Structures, 2010, 92(2): 244–253. doi: 10.1016/j.compstruct.2009.07.024
|
[12] |
李坚波, 王永生, 孙存楼. 可调距螺旋桨转叶力矩的数值计算[J]. 中国水运(下半月), 2008, 8(12): 12–14.
LI J B, WANG Y S, SUN C L. Numerical calculation of spindle torque of controllable pitch propeller[J]. China Water Transport (Second half of the month), 2008, 8(12): 12–14 (in Chinese).
|
[13] |
DUCOIN A, YOUNG Y L. Hydroelastic response and stability of a hydrofoil in viscous flow[J]. Journal of Fluids and Structures, 2013, 38: 40–57. doi: 10.1016/j.jfluidstructs.2012.12.011
|
[14] |
HUANG Z, XIONG Y, XU Y. The simulation of deformation and vibration characteristics of a flexible hydrofoil based on static and transient FSI[J]. Ocean Engineering, 2019, 182: 61–74. doi: 10.1016/j.oceaneng.2019.04.028
|
[15] |
李汝鹏, 陈磊, 刘学术, 等. 基于渐进损伤理论的复合材料开孔拉伸失效分析[J]. 航空材料学报, 2018, 38(5): 138–146. doi: 10.11868/j.issn.1005-5053.2017.000133
LI R P, CHEN L, LIU X S, et al. Progressive damage based failure analysis of open-hole composite laminates under tension[J]. Journal of Aeronautical Materials, 2018, 38(5): 138–146 (in Chinese). doi: 10.11868/j.issn.1005-5053.2017.000133
|
![]() |
![]() |