Volume 17 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
HU X Q, HUANG Z, LIU Z H. Numerical analysis on bending-torsional coupling stiffness characteristics of composite propeller[J]. Chinese Journal of Ship Research, 2022, 17(1): 25–35 doi: 10.19693/j.issn.1673-3185.02224
Citation: HU X Q, HUANG Z, LIU Z H. Numerical analysis on bending-torsional coupling stiffness characteristics of composite propeller[J]. Chinese Journal of Ship Research, 2022, 17(1): 25–35 doi: 10.19693/j.issn.1673-3185.02224

Numerical analysis on bending-torsional coupling stiffness characteristics of composite propeller

doi: 10.19693/j.issn.1673-3185.02224
  • Received Date: 2020-12-15
  • Rev Recd Date: 2021-03-09
  • Available Online: 2022-01-05
  • Publish Date: 2022-03-02
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  The bending-torsional coupling deformation degree of a composite propeller reflects the stiffness characteristics of the blade, which in turn have a certain correlation with its hydrodynamic performance. A fiber layer design for a composite propeller is optimized from the perspective of stiffness.   Methods  Taking a DTMB 4383 composite propeller as the research object, based on the self-iterative algorithm of the fluid-structure interaction of the composite propeller, a numerical calculation method for the bending stiffness and torsional stiffness of the blade is constructed. The stiffness of the blade under different ply schemes is numerically calculated under the conditions of unidirectional carbon fiber cloth or orthogonal carbon fiber cloth laid on the blade, and the bending-torsional stiffness characteristics of the blade and its corresponding laws with hydrodynamic performance are studied.   Results  The numerical calculation results show that the thrust coefficient of the single blade, the difference value of the thrust coefficient of the composite propeller, and the stiffness of the blade exhibit relatively synchronous change laws; under the same elastic modulus in the main direction, the minimum difference value of the thrust coefficient of the composite propeller with orthogonal carbon fiber cloth is greater than that with unidirectional carbon fiber cloth; when the elastic modulus of the material decreases, the stiffness of the blade decreases, and the thrust coefficient of the single blade and the difference value of the thrust coefficient of the composite propeller also decreases; when the stiffness of the blade is small, the composite propeller can give fuller play to the advantages of the adaptive flow field, and the bending-torsional coupling produces larger pitch deformation, resulting in a smaller periodic thrust ripple than that of a metal propeller in the high and low flow areas.   Conclusions  The results of this paper can guide the optimization design of composite propellers by improving the hydrodynamic performance of the stern.
  • loading
  • [1]
    牛磊, 孙鹏文, 曹婧华, 等. 基于一阶响应面法的铺层参数对叶片性能的耦合影响分析[J]. 内蒙古工业大学学报 (自然科学版), 2018, 37(2): 119–124.

    NIU L, SUN P W, CAO J H, et al. Coupling effect analysis of laminating parameters on blade property based on the first-order response surface method[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2018, 37(2): 119–124 (in Chinese).
    [2]
    吴鹏辉, 孙鹏文. 铺层参数对风力机叶片刚度的耦合影响分析[J]. 内蒙古工业大学学报(自然科学版), 2019, 38(2): 110–114.

    WU P H, SUN P W. Coupling influence analysis of ply parameters to the stiffness of wind turbine blade[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2019, 38(2): 110–114 (in Chinese).
    [3]
    洪毅. 高性能复合材料螺旋桨的结构设计及水弹性优化[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    HONG Y. Structure design and hydroelastic optimization of high performance composite propeller[D]. Harbin: Harbin Engineering University, 2011 (in Chinese).
    [4]
    王子文. 大型风力机叶片弯扭耦合特性研究及轻量化设计[D]. 武汉: 华中科技大学, 2019.

    WANG Z W. Research on bend-twist coupling characteristics and lightweight design of large wind turbine blade[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
    [5]
    贺伟. 船用复合材料螺旋桨水弹性分析与设计方法研究[D]. 武汉: 武汉理工大学, 2015.

    HE W. Research on hydroelastic analysis and design of composite marine propellers[D]. Wuhan: Wuhan University of Technology, 2015 (in Chinese).
    [6]
    苏军, 安中彦, 于云飞, 等. 发动机叶片扭转和弯曲变形同步测量新方法[J]. 实验力学, 2017, 32(2): 279–285. doi: 10.7520/1001-4888-16-017

    SU J, AN Z Y, YU Y F, et al. A new synchronous measurement method for torsion and bending deformation of engine blade[J]. Journal of Experimental Mechanics, 2017, 32(2): 279–285 (in Chinese). doi: 10.7520/1001-4888-16-017
    [7]
    叶礼裕, 王超, 孙帅, 等. 基于悬臂梁法和面元法耦合的桨叶应力分布预报[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(5): 968–973.

    YE L Y, WANG C, SUN S, et al. Prediction of blade stress distribution based on cantilever beam method and penal method[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2015, 39(5): 968–973 (in Chinese).
    [8]
    谭廷寿. 非均匀流场中螺旋桨性能预报和理论设计研究[D]. 武汉: 武汉理工大学, 2003.

    TAN T S. Performance prediction and theoretical design research on propeller in non-uniform flow[D]. Wuhan: Wuhan University of Technology, 2003 (in Chinese).
    [9]
    徐欣伟. 螺旋桨的设计及性能预报与软件实现[D]. 武汉: 华中科技大学, 2011.

    XU X W. Design and prediction performance of propeller and its realization in software[D]. Wuhan: Huazhong University of Science and Technology, 2011 (in Chinese).
    [10]
    YOUNG Y L. Fluid–structure interaction analysis of flexible composite marine propellers[J]. Journal of Fluids and Structures, 2008, 24(6): 799–818. doi: 10.1016/j.jfluidstructs.2007.12.010
    [11]
    YOUNG Y L, BAKER J W, MOTLEY M R. Reliability-based design and optimization of adaptive marine structures[J]. Composite Structures, 2010, 92(2): 244–253. doi: 10.1016/j.compstruct.2009.07.024
    [12]
    李坚波, 王永生, 孙存楼. 可调距螺旋桨转叶力矩的数值计算[J]. 中国水运(下半月), 2008, 8(12): 12–14.

    LI J B, WANG Y S, SUN C L. Numerical calculation of spindle torque of controllable pitch propeller[J]. China Water Transport (Second half of the month), 2008, 8(12): 12–14 (in Chinese).
    [13]
    DUCOIN A, YOUNG Y L. Hydroelastic response and stability of a hydrofoil in viscous flow[J]. Journal of Fluids and Structures, 2013, 38: 40–57. doi: 10.1016/j.jfluidstructs.2012.12.011
    [14]
    HUANG Z, XIONG Y, XU Y. The simulation of deformation and vibration characteristics of a flexible hydrofoil based on static and transient FSI[J]. Ocean Engineering, 2019, 182: 61–74. doi: 10.1016/j.oceaneng.2019.04.028
    [15]
    李汝鹏, 陈磊, 刘学术, 等. 基于渐进损伤理论的复合材料开孔拉伸失效分析[J]. 航空材料学报, 2018, 38(5): 138–146. doi: 10.11868/j.issn.1005-5053.2017.000133

    LI R P, CHEN L, LIU X S, et al. Progressive damage based failure analysis of open-hole composite laminates under tension[J]. Journal of Aeronautical Materials, 2018, 38(5): 138–146 (in Chinese). doi: 10.11868/j.issn.1005-5053.2017.000133
  • ZG2224_en.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(6)

    Article Metrics

    Article Views(768) PDF Downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return