Volume 16 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
ZHENG M, YAN S W, CHU X M, et al. Handling scheme simulation and scheduling optimization for carrier-borne aircraft[J]. Chinese Journal of Ship Research, 2021, 16(3): 1–8, 23 doi: 10.19693/j.issn.1673-3185.01945
Citation: ZHENG M, YAN S W, CHU X M, et al. Handling scheme simulation and scheduling optimization for carrier-borne aircraft[J]. Chinese Journal of Ship Research, 2021, 16(3): 1–8, 23 doi: 10.19693/j.issn.1673-3185.01945

Handling scheme simulation and scheduling optimization for carrier-borne aircraft

doi: 10.19693/j.issn.1673-3185.01945
  • Received Date: 2020-04-30
  • Rev Recd Date: 2020-08-15
  • Available Online: 2021-04-28
  • Publish Date: 2021-06-10
    © 2021 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  To improve the deck handling efficiency of carrier-borne aircraft, a study of rapid handling routes and scheduling schemes is carried out.  Methods  A fast planning method of deck handling routes based on network topology is established, and a simulation model is developed on the basis of an aircraft kinematic model and line-of-sight control method. Taking typical launching and recovery operations as examples, the carrier-borne aircraft deck handling constraints, principles and optimization objectives are discussed, and a rapid optimization method for deck handling scheduling is proposed.  Results  The simulation results show that the optimized algorithm can significantly shorten the total deck handling time of aviation operations, and the performance of the optimized deck handling scheme is close to the US Navy Surge Operation data from 1997.  Conclusions  A reasonable carrier-borne aircraft deck handling scheme can be obtained quickly using the proposed method, which is of reference value for research into carrier-borne aircraft sortie capability and human-machine deck handling scheme decision-making.
  • loading
  • [1]
    RYAN J C. Assessing the performance of human-automation collaborative planning systems[D]. Boston: Massachusetts Institute of Technology, 2011.
    JOHNSTON J S. A feasibility study of a persistent monitoring system for the flight deck of U.S. navy aircraft carriers[D]. US: Air University, 2009.
    RYAN J C, BANERJEE A G, CUMMINGS M L, et al. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations[J]. IEEE Transactions on Cybernetics, 2014, 44(6): 761–773. doi: 10.1109/TCYB.2013.2271694
    韩维, 司维超, 丁大春, 等. 基于聚类PSO算法的舰载机舰面多路径动态规划[J]. 北京航空航天大学学报, 2013, 39(5): 610–614.

    HAN W, SI W C, DING D C, et al. Multi-routes dynamic planning on deck of carrier plane based on clustering PSO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 610–614 (in Chinese).
    贺少华, 颜世伟, 许景伟. 飞行甲板多机滑行路径规划[J]. 海军航空工程学院学报, 2019, 34(1): 126–132. doi: 10.7682/j.issn.1673-1522.2019.01.005

    HE S H, YAN S W, XU J W. Path designing for aircrafts' taxiing on flight deck while launching[J]. Journal of Naval Aeronautical and Astronautical University, 2019, 34(1): 126–132 (in Chinese). doi: 10.7682/j.issn.1673-1522.2019.01.005
    张智, 林圣琳, 夏桂华, 等. 舰载机甲板调运过程避碰路径规划研究[J]. 哈尔滨工程大学学报, 2014, 35(1): 9–15.

    ZHANG Z, LIN S L, XIA G H, et al. Collision avoidance path planning for an aircraft in scheduling process on deck[J]. Journal of Harbin Engineering University, 2014, 35(1): 9–15 (in Chinese).
    刘洁, 韩维, 徐卫国, 等. 基于滚动时域的舰载机甲板运动轨迹跟踪最优控制[J]. 航空学报, 2019, 40(8): 322842.

    LIU J, HAN W, XU W G, et al. Optimal path tracking control of carrier-based aircraft on the deck based on RHC[J]. Acta Aeronauticaet Astronautica Sinica, 2019, 40(8): 322842 (in Chinese).
    高杰, 赵海丹, 胡楚君. 甲板舰载机移动路径规划与运动协调方法研究[C]//第六届中国指挥控制大会论文集, 2018: 494-500.

    GAO J, ZHAO H D, HU C J. Research on moving path planning and motion coordination method for carrier-borne aircraft on deck[C]//Proceedings of 6th China Conference on Command and Control. [S.l.: s.n.], 2018: 494-500 (in Chinese).
    杨炳恒, 毕玉泉, 徐伟勤. 一种舰载机调运作业流程优化模型[J]. 舰船科学技术, 2011, 33(1): 118–121. doi: 10.3404/j.issn.1672-7649.2011.01.026

    YANG B H, BI Y Q, XU W Q. A model of aircraft handling workflow optimization[J]. Ship Science and Technology, 2011, 33(1): 118–121 (in Chinese). doi: 10.3404/j.issn.1672-7649.2011.01.026
    司维超, 韩维, 史玮韦. 基于HPSO算法和GA的舰载机甲板布放方法比较[J]. 系统工程与电子技术, 2013, 35(2): 338–344. doi: 10.3969/j.issn.1001-506X.2013.02.17

    SI W C, HAN W, SHI W W. Comparison of deck-disposed methods for shipboard aircraft based on HPSO and GA[J]. Systems Engineering and Electronics, 2013, 35(2): 338–344 (in Chinese). doi: 10.3969/j.issn.1001-506X.2013.02.17
    余亚磊, 苏荣彬, 冯旭, 等. 基于速变LOS的无人船反步自适应路径跟踪控制[J]. 中国舰船研究, 2019, 14(3): 163–171.

    YU Y L, SU R B, FENG X, et al. Tracking control of back stepping adaptive path of unmanned surface vessels based on surge-varying LOS[J]. Chinese Journal of Ship Research, 2019, 14(3): 163–171 (in Chinese).
  • ZG1945_en.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (661) PDF downloads(179) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint