Volume 15 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
LI W B, HAO C H, GAO J J, et al. Overview of the development of shipboard integrated power system[J]. Chinese Journal of Ship Research, 2020, 15(6): 1–11 doi: 10.19693/j.issn.1673-3185.01682
Citation: LI W B, HAO C H, GAO J J, et al. Overview of the development of shipboard integrated power system[J]. Chinese Journal of Ship Research, 2020, 15(6): 1–11 doi: 10.19693/j.issn.1673-3185.01682

Overview of the development of shipboard integrated power system

doi: 10.19693/j.issn.1673-3185.01682
  • Received Date: 2019-07-21
  • Accepted Date: 2020-10-28
  • Rev Recd Date: 2020-06-18
  • Available Online: 2020-10-28
  • Publish Date: 2020-12-30
    © 2020 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Shipboard integrated power systems (IPS) combine a traditional marine independent mechanical propulsion system and a power system in the form of electrical energy, which is an important trend of warship power systems at present. Hence, it is necessary to have an in-depth understanding of IPS's constitution, development trends and approach to construct. Compared with land power grid, this thesis tackles the significant characteristics of shipboard IPS, probes into the researches and development tendency of relative technologies, contrasts and summarizes typical analysis and evaluation techniques of shipboard IPS, such as power flow calculation analysis, reliability evaluation and risk assessment, to provide a theoretical basis for the design, construction, operation and maintenance, management and control. It indicates that internet of things technology, 5G communication technology, multi-core CPU technology and information interaction and fusion will be effective approaches in meeting all kinds of challenge faced by the future development of shipboard IPS . Moreover, the technologies including intelligent sensing measurement, intelligent energy management, intelligent fault reconstruction, etc., will be the essential foundation of shipboard IPS, to maximize the combat capability and survivability of warship.
  • loading
  • [1]
    王守相, 孟子涵. 舰船综合电力系统分析技术研究现状与展望[J]. 中国舰船研究, 2019, 14(2): 107–117.

    WANG S X, MENG Z H. Current status and prospects of analysis technologies of shipboard integrated power system[J]. Chinese Journal of Ship Research, 2019, 14(2): 107–117 (in Chinese).
    [2]
    VELARDO C, SHAH S A, GIBSON O, et al. Digital health system for personalised COPD long-term management[J]. BMC Medical Informatics and Decision Making, 2017, 17(1): 19.
    [3]
    王志飞, 肖晗, 隋波. 舰船综合电力系统预防控制方法综述[J]. 舰船电子工程, 2019, 39(11): 159–166.

    WANG Z F, XIAO H, SUI B. Review of preventive method for vessel integrated power system[J]. Ship Electronic Engineering, 2019, 39(11): 159–166 (in Chinese).
    [4]
    顾云鹏, 臧严, 康美泽, 等. 舰船综合电力系统的发展历程、标准要求及应用前景[J]. 船舶标准化与质量, 2017(2): 21–23, 10.

    GU Y P, ZANG Y, KANG M Z, et al. Development history, standard requirements and application prospect of marine integrated power system[J]. Shipbuilding Standardization & Quality, 2017(2): 21–23, 10 (in Chinese).
    [5]
    杨挺, 翟峰, 赵英杰, 等. 泛在电力物联网释义与研究展望[J]. 电力系统自动化, 2019, 43(13): 9–20, 53.

    YANG T, ZHAI F, ZHAO Y J, et al. Explanation and prospect of ubiquitous electric power internet of things[J]. Automation of Electric Power Systems, 2019, 43(13): 9–20, 53 (in Chinese).
    [6]
    肖振锋, 辛培哲, 刘志刚, 等. 泛在电力物联网形势下的主动配电网规划技术综述[J]. 电力系统保护与控制, 2020, 48(3): 43–48.

    XIAO Z F, XIN P Z, LIU Z G, et al. An overview of planning technology for active distribution network under the situation of ubiquitous power internet of things[J]. Power System Protection and Control, 2020, 48(3): 43–48 (in Chinese).
    [7]
    梅生伟. 电力系统的伟大成就及发展趋势[J]. 科学通报, 2020, 65(6): 442–452.

    MEI S W. Great achievements and development trends of power systems[J]. Chinese Science Bulletin, 2020, 65(6): 442–452 (in Chinese).
    [8]
    马伟明. 舰船综合电力系统中的机电能量转换技术[J]. 电气工程学报, 2015, 10(4): 3–10.

    MA W M. Electromechanical power conversion technologies in vessel integrated power system[J]. Journal of Electrical Engineering, 2015, 10(4): 3–10 (in Chinese).
    [9]
    莫文科, 王起硕, 黄伍德, 等. 浅论未来船舶电力系统智能化的发展与实现[J]. 船电技术, 2019, 39(增刊 1): 8–11.

    MO W K, WANG Q S, HUANG W D, et al. The development and the realization of intelligent ship power system in the future[J]. Marine Electric & Electronic Engineering, 2019, 39(Supp 1): 8–11 (in Chinese).
    [10]
    吴本祥, 张晓锋, 徐国顺, 等. 船舶交直流混合电力系统接地方式对直流共模电压影响研究[J]. 海军工程大学学报, 2019, 31(3): 102–106.

    WU B X, ZHANG X F, XU G S, et al. Research on influence of grounding mode on DC common voltage in ship AC/DC hybrid power system[J]. Journal of Naval University of Engineering, 2019, 31(3): 102–106 (in Chinese).
    [11]
    王子强, 王杰. 一种计及智能电网信息物理特性的分布式控制器[J]. 中国电机工程学报, 2019, 39(23): 6921–6933.

    WANG Z Q, WANG J. A distributed control considering the cyber-physical characteristics of smart grid[J]. Proceedings of the CSEE, 2019, 39(23): 6921–6933 (in Chinese).
    [12]
    BALDWIN T L, LEWIS S A. Distribution load flow methods for shipboard power systems[J]. IEEE Transactions on Industry Applications, 2004, 40(5): 1183–1190.
    [13]
    ALFRED K C. A framework of a multi-agent system for detection and diagnosis of fault on shipboard power systems[D]. Washington D. C.: Howard University, 2008.
    [14]
    MEDINA M M, QI L, BUTLER P K L. A three phase load flow algorithm for shipboard power systems (SPS)[C]//2003 IEEE PES Transmission and Distribution Conference and Exposition (IEEE Cat. No. 03CH37495). Dallas, USA: IEEE, 2003: 227-233.
    [15]
    康军, 马伟明, 付立军, 等. 舰船电力系统潮流计算方法[J]. 武汉理工大学学报(交通科学与工程版), 2008, 32(1): 32–35.

    KANG J, MA W M, FU L J, et al. Load flow computing method for shipboard power systems[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2008, 32(1): 32–35 (in Chinese).
    [16]
    冀欣, 张晓锋. 基于节点电势法的舰船电力系统潮流计算方法[J]. 船海工程, 2007, 36(5): 132–135.

    JI X, ZHANG X F. A power flow calculation algorithm for shipboard power system based on the node voltage method[J]. Ship & Ocean Engineering, 2007, 36(5): 132–135 (in Chinese).
    [17]
    YELETI S, FU Y. Load flow and security assessment of VSC based MVDC shipboard power systems[C]//2011 North American Power Symposium. Boston, USA: IEEE, 2011: 1-7.
    [18]
    SU C L, YEH C T. Probabilistic security analysis of shipboard DC zonal electrical distribution systems[C]//2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, USA: IEEE, 2008: 1-7.
    [19]
    兰海, 鲍鹏, 王琬婷. 舰船中压直流综合电力推进系统设计及稳态分析研究[J]. 中国造船, 2017, 58(2): 216–229.

    LAN H, BAO P, WANG W T. Design and steady-state analysis of medium voltage DC propulsion power system on ships[J]. Shipbuilding of China, 2017, 58(2): 216–229 (in Chinese).
    [20]
    RASHKI M, AZARKISH H, ROSTAMIAN M, et al. Classification correction of polynomial response surface methods for accurate reliability estimation[J]. Structural Safety, 2019, 81: 101869.
    [21]
    HORN J T, LEIRA B J. Fatigue reliability assessment of offshore wind turbines with stochastic availability[J]. Reliability Engineering & System Safety, 2019, 191: 106550.
    [22]
    李红江, 鲁宗相, 王淼, 等. 基于可靠性模型的船舶电网拓扑结构对比分析[J]. 电工技术学报, 2006, 21(11): 47–53.

    LI H J, LU Z X, WANG M, et al. Contrasting analysis of shipboard power system topological structures based on reliability model[J]. Transactions of China Electrotechnical Society, 2006, 21(11): 47–53 (in Chinese).
    [23]
    STEVENS B, SANTOSO S. Reliability analysis of a shipboard electrical power distribution system based on breaker-and-a-half topology[C]//2013 IEEE Electric Ship Technologies Symposium (ESTS). Arlington, USA: IEEE, 2013: 387-393.
    [24]
    DUBEY A, SANTOSO S. Availability-based distribution circuit design for shipboard power system[J]. IEEE Transactions on Smart Grid, 2017, 8(4): 1599–1608.
    [25]
    CAPASSO A, LAMEDICA R, LAURIA S, et al. Voltage quality studies in electric power systems: an AC/DC network for a shipboard application[C]//2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). Florence, Italy: IEEE, 2016: 1-8.
    [26]
    KWAN T H, SHEN Y T, YAO Q H. An energy management strategy for supplying combined heat and power by the fuel cell thermoelectric hybrid system[J]. Applied Energy, 2019, 251: 113318.
    [27]
    MAKI S, CHANDRAN R, FUJII M, et al. Innovative information and communication technology (ICT) system for energy management of public utilities in a post-disaster region: case study of a wastewater treatment plant in Fukushima[J]. Journal of Cleaner Production, 2019, 233: 1425–1436.
    [28]
    IRIS C, LAM J S L. A review of energy efficiency in ports: operational strategies, technologies and energy management systems[J]. Renewable and Sustainable Energy Reviews, 2019, 112(9): 170–182.
    [29]
    卓金宝, 施伟锋, 兰莹, 等. 基于物联网技术的电力推进船舶电能质量监视系统设计[J]. 中国舰船研究, 2019, 14(2): 118–125.

    ZHUO J B, SHI W F, LAN Y, et al. Design of power quality monitoring system for electric propulsion ship based on IoT technology[J]. Chinese Journal of Ship Research, 2019, 14(2): 118–125 (in Chinese).
    [30]
    胡家兵, 袁小明, 程时杰. 电力电子并网装备多尺度切换控制与电力电子化电力系统多尺度暂态问题[J]. 中国电机工程学报, 2019, 39(18): 5457–5467.

    HU J B, YUAN X M, CHENG S J. Multi-time scale transients in power-electronized power systems considering multi-time scale switching control schemes of power electronics apparatus[J]. Proceedings of the CSEE, 2019, 39(18): 5457–5467 (in Chinese).
    [31]
    冒如权. 舰船能量管理系统现状及发展趋势[J]. 上海船舶运输科学研究所学报, 2012, 35(1): 19–22.

    MA R Q. Current status and development trend of ship power management systems[J]. Journal of Shanghai Ship and Shipping Research Institute, 2012, 35(1): 19–22 (in Chinese).
    [32]
    ALASALI F, HABEN S, HOLDERBAUM W. Stochastic optimal energy management system for RTG cranes network using genetic algorithm and ensemble forecasts[J]. Journal of Energy Storage, 2019, 24: 100759.
    [33]
    许智豪, 李维波, 华逸飞, 等. I2C总线技术在舰船能量管理系统I/O端口扩展中的应用[J]. 中国舰船研究, 2019, 14(1): 144–149.

    XU Z H, LI W B, HUA Y F, et al. Application of I2C bus technology in I/O port expansion of ship energy management system[J]. Chinese Journal of Ship Research, 2019, 14(1): 144–149 (in Chinese).
    [34]
    CHEN L H, SHI P, LIU M. Fault reconstruction for Markovian jump systems with iterative adaptive observer[J]. Automatica, 2019, 105: 254–263.
    [35]
    HAN M, LI J B, HAN B, et al. Fault subspace decomposition and reconstruction theory based online fault prognosis[J]. Control Engineering Practice, 2019, 85: 121–131.
    [36]
    杨秀霞, 张晓锋, 张毅, 等. 基于启发式遗传算法的舰船电力系统网络重构研究[J]. 中国电机工程学报, 2003, 23(10): 42–46.

    YANG X X, ZHANG X F, ZHANG Y, et al. The study of network reconfiguration of the shipboard power system based on heuristic genetic algorithm[J]. Proceedings of the CSEE, 2003, 23(10): 42–46 (in Chinese).
    [37]
    WANG C J, WANG X H, XIAO J M, et al. Fault reconfiguration of shipboard power system based on triple quantum differential evolution algorithm[J]. Journal of Shanghai Jiaotong University (Science), 2016, 21(4): 433–442.
    [38]
    MITRA P, VENAYAGAMOORTHY G K. Real-time implementation of an intelligent algorithm for electric ship power system reconfiguration[C]//2009 IEEE Electric Ship Technologies Symposium. Baltimore, USA: IEEE, 2009: 9-11.
    [39]
    陈雁, 孙海顺, 文劲宇, 等. 改进粒子群算法在船舶电力系统网络重构中的应用[J]. 电力自动化设备, 2011, 31(3): 29–34, 39.

    CHEN Y, SUN H S, WEN J Y, et al. Application of improved PSO algorithm in network reconfiguration of shipboard power system[J]. Electric Power Automation Equipment, 2011, 31(3): 29–34, 39 (in Chinese).
    [40]
    LU W D, LIU G Z, SI P Y, et al. Joint resource optimization in simultaneous wireless information and power transfer (SWIPT) enabled multi-relay internet of things (IoT) system[J]. Sensors, 2019, 19(11): 2536. doi: 10.3390/s19112536
    [41]
    DAI B. Design of complex wind power generation parameter control system based on embedded control combined with internet of things[J]. Web Intelligence, 2019, 17(2): 131–139. doi: 10.3233/WEB-190407
    [42]
    ALI M S, LI Y, JEWEL M K H, et al. Channel estimation and peak-to-average power ratio analysis of narrowband internet of things uplink systems[J]. Wireless Communications and Mobile Computing, 2018, 2018: 2570165.
    [43]
    SAHRAEI N, WATSON S, SOFIA S, et al. Persistent and adaptive power system for solar powered sensors of internet of things (IoT)[J]. Energy Procedia, 2017, 143: 739–741.
    [44]
    JASIŃSKI M, MAJTCZAK P, MALINOWSKI A. Fuzzy logic in decision support system as a simple human/internet of things interface for shunt active power filter[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2016, 64(4): 877. doi: 10.1515/bpasts-2016-0096
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (660) PDF downloads(1270) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return