Citation: | Zhang Aman, Wang Shiping, Peng Yuxiang, Ming Furen, Liu Yunlong. Research progress in underwater explosion and its damage to ship structures[J]. Chinese Journal of Ship Research, 2019, 14(3): 1-13. doi: 10.19693/j.issn.1673-3185.01608 |
[1] |
吴有生, 彭兴宁, 赵本立.爆炸载荷作用下舰船板架的变形与破损[J].中国造船, 1995, 36(4):55-61. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC199504006.htm
Wu Y S, Peng X N, Zhao B L. Plastic deformation and damage of naval panels subjected to explosion loading[J]. Shipbuilding of China, 1995, 36(4):55-61(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC199504006.htm
|
[2] |
侯海量, 朱锡, 梅志远.舱内爆炸载荷及舱室板架结构的失效模式分析[J].爆炸与冲击, 2007, 27(2):151-158. doi: 10.3321/j.issn:1001-1455.2007.02.010
Hou H L, Zhu X, Mei Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion[J]. Explosion and Shock Waves, 2007, 27(2):151-158(in Chinese). doi: 10.3321/j.issn:1001-1455.2007.02.010
|
[3] |
Keil A H. The response of ships to underwater explosions[J]. Transactions-Society of Naval Architects and Marine Engineers, 1961, 69:43. http://cn.bing.com/academic/profile?id=4c8e05bad2708d7cd4fabaa0fb4c977a&encoded=0&v=paper_preview&mkt=zh-cn
|
[4] |
金键, 朱锡, 侯海量, 等.水下爆炸载荷下舰船响应与毁伤研究综述[J].水下无人系统学报, 2017, 25(6):396-409. http://d.old.wanfangdata.com.cn/Periodical/yljs201706002
Jin J, Zhu X, Hou H L, et al. Review of dynamic response and damage mechanism of ship structure subjected to underwater explosion load[J]. Journal of Unmanned Undersea Systems, 2017, 25(6):396-409(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yljs201706002
|
[5] |
李国华, 李玉节, 张效慈, 等.气泡运动与舰船设备冲击振动关系的试验验证[J].船舶力学, 2005, 9(1):98-105. doi: 10.3969/j.issn.1007-7294.2005.01.015
Li G H, Li Y J, Zhang X C, et al. Experimental verification of relationship between bubble motion and shock vibration of ship equipment[J]. Journal of Ship Mechanics, 2005, 9(1):98-105(in Chinese). doi: 10.3969/j.issn.1007-7294.2005.01.015
|
[6] |
董九亭, 刘建湖, 汪俊, 等.水下爆炸下舰艇不同部位冲击环境数值分析[J].中国舰船研究, 2018, 13(5):32-38. http://www.ship-research.com/CN/abstract/abstract1852.shtml
Dong J T, Liu J H, Wang J, et al. Numerical analysis on shock environment in different ship regions subjected to underwater explosion[J]. Chinese Journal of Ship Research, 2018, 13(5):32-38(in Chinese). http://www.ship-research.com/CN/abstract/abstract1852.shtml
|
[7] |
刘建湖.舰船非接触水下爆炸动力学的理论与应用[D].无锡: 中国船舶科学研究中心, 2002.
Liu J H. Theory and its applications of ship dynamic responses to non-contact underwater explosions[D]. Wuxi: China Ship Scientific Research Center, 2002(in Chinese).
|
[8] |
Liang C C, Tai Y S. Shock responses of a surface ship subjected to noncontact underwater explosions[J]. Ocean Engineering, 2006, 33(5/6):748-772.
|
[9] |
Cole R H. Underwater explosion[M]. New Jersy:Princeton University Press, 1948.
|
[10] |
Klaseboer E, Hung K C, Wang C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure[J]. Journal of Fluid Mechanics, 2005, 537:387-413. doi: 10.1017/S0022112005005306
|
[11] |
Zamyshlyaev B V, Yakovlev Yu S. Dynamic loads in underwater explosion: AD 757183[R]. Washington D C: Naval Intelligence Support Center, 1973.
|
[12] |
Brett J M, Yiannakopolous G. A study of explosive effects in close proximity to a submerged cylinder[J]. International Journal of Impact Engineering, 2008, 35(4):206-225. doi: 10.1016/j.ijimpeng.2007.01.007
|
[13] |
李烨.近场水下爆炸载荷及其对舰船局部结构毁伤研究[D].哈尔滨: 哈尔滨工程大学, 2016.
Li Y. Research on near field underwater explosion loads and local structure damage of vessels[D]. Harbin: Harbin Engineering University, 2016(in Chinese).
|
[14] |
赵延杰.近距及接触水下爆炸冲击波作用下结构毁伤的数值模拟[D].大连: 大连理工大学, 2013.
Zhao Y J. Numerical simulation of structural damage resulting from shock wave of close-in underwater explosion or contact underwater explosion[D]. Dalian: Dalian University of Technology, 2013(in Chinese).
|
[15] |
杨文山.水下接触爆炸舰船局部毁伤及防护机理[D].哈尔滨: 哈尔滨工程大学, 2011.
Yang W S. Local damage and protection mechanism of warship underwater contact explosion[D]. Harbin: Harbin Engineering University, 2011(in Chinese).
|
[16] |
Zhang Y L, Yeo K S, Khoo B C, et al. 3D jet impact and toroidal bubbles[J]. Journal of Computational Physics, 2001, 166(2):336-360. doi: 10.1006/jcph.2000.6658
|
[17] |
李玉节, 张效慈, 吴有生, 等.水下爆炸气泡激起的船体鞭状运动[J].中国造船, 2001, 42(3):1-7. doi: 10.3969/j.issn.1000-4882.2001.03.001
Li Y J, Zhang X C, Wu Y S, et al. Whipping response of ship hull induced by underwater explosion bubble[J]. Shipbuilding of China, 2001, 42(3):1-7(in Chinese). doi: 10.3969/j.issn.1000-4882.2001.03.001
|
[18] |
董海, 刘建湖, 吴有生.水下爆炸气泡脉动作用下细长加筋圆柱壳的鞭状响应分析[J].船舶力学, 2007, 11(2):250-258. doi: 10.3969/j.issn.1007-7294.2007.02.012
Dong H, Liu J H, Wu Y S. Whipping response analysis of slender stiffened cylindrical shell subjected to underwater explosion with bubble pulse[J]. Journal of Ship Mechanics, 2007, 11(2):250-258(in Chinese). doi: 10.3969/j.issn.1007-7294.2007.02.012
|
[19] |
李海涛, 朱锡, 黄晓明, 等.近场脉动气泡作用下船体梁模型动响应试验研究[J].哈尔滨工程大学学报, 2008, 29(8):773-778. doi: 10.3969/j.issn.1006-7043.2008.08.001
Li H T, Zhu X, Huang X M, et al. Experimental study on dynamic response of a ship-like model subjected to near field underwater explosion bubbles[J]. Journal of Harbin Engineering University, 2008, 29(8):773-778(in Chinese). doi: 10.3969/j.issn.1006-7043.2008.08.001
|
[20] |
Zong Z. A hydroplastic analysis of a free- free beam floating on water subjected to an underwater bubble[J]. Journal of Fluids and Structures, 2005, 20(3):359-372. doi: 10.1016/j.jfluidstructs.2004.08.003
|
[21] |
郭君, 孙丰, 曹冬梅.舰船抗沉性的抗鱼雷攻击极限能力分析[J].哈尔滨工程大学学报, 2014, 35(9):1082-1086. http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201409006
Guo J, Sun F, Cao D M. Analysis of the maximum torpedo-attack resistance of warships based on anti-sinking capability[J]. Journal of Harbin Engineering University, 2014, 35(9):1082-1086(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201409006
|
[22] |
Zhang A M, Cao X Y, Ming F R, et al. Investigation on a damaged ship model sinking into water based on three dimensional SPH method[J]. Applied Ocean Research, 2013, 42:24-31. doi: 10.1016/j.apor.2013.03.006
|
[23] |
Ramajeyathilagam K, Vendhan C P. Deformation and rupture of thin rectangular plates subjected to underwater shock[J]. International Journal of Impact Engineering, 2004, 30(6):699-719. doi: 10.1016/j.ijimpeng.2003.01.001
|
[24] |
牟金磊, 朱锡, 张振华, 等.爆炸冲击作用下加筋板结构变形研究[J].海军工程大学学报, 2007, 19(6):12-16. doi: 10.3969/j.issn.1009-3486.2007.06.003
Mu J L, Zhu X, Zhang Z H, et al. A study on deformation of blast-loaded stiffened plates[J]. Journal of Naval University of Engineering, 2007, 19(6):12-16(in Chinese). doi: 10.3969/j.issn.1009-3486.2007.06.003
|
[25] |
Hung C F, Hwangfu J J. Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries[J]. Journal of Fluid Mechanics, 2010, 651:55-80. doi: 10.1017/S0022112009993776
|
[26] |
Zhang N, Zong Z. The effect of rigid-body motions on the whipping response of a ship hull subjected to an underwater bubble[J]. Journal of Fluids and Structures, 2011, 27(8):1326-1336. doi: 10.1016/j.jfluidstructs.2011.05.004
|
[27] |
章振华, 谌勇, 肖锋, 等.敷设超弹性覆盖层舰船水下爆炸冲击实验与仿真分析[J].振动与冲击, 2014, 33(10):106-112. http://d.old.wanfangdata.com.cn/Periodical/zdycj201410021
Zhang Z H, Chen Y, Xiao F, et al. Underwater explosion tests and simulation for ships with hyper-elastic coating[J]. Journal of Vibration and Shock, 2014, 33(10):106-112(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdycj201410021
|
[28] |
孔祥韶, 王旭阳, 徐敬博, 等.复合防护液舱抗爆效能对比试验研究[J].兵工学报, 2018, 39(12):2438-2449. doi: 10.3969/j.issn.1000-1093.2018.12.018
Kong X S, Wang X Y, Xu J B, et al. Comparative experimental study of anti-explosion performance of compound protective liquid cabin[J]. Acta Armamentarii, 2018, 39(12):2438-2449(in Chinese). doi: 10.3969/j.issn.1000-1093.2018.12.018
|
[29] |
吴庭翱, 张弩, 侯海量, 等.水下接触爆炸下多舱防护结构载荷特性及动响应研究进展[J].中国舰船研究, 2018, 13(3):1-12. http://www.ship-research.com/CN/abstract/abstract1804.shtml
Wu T A, Zhang N, Hou H L, et al. Research progress on load characteristics and dynamic response of multicamerate defense structure subjected to contact underwater explosion[J]. Chinese Journal of Ship Research, 2018, 13(3):1-12(in Chinese). http://www.ship-research.com/CN/abstract/abstract1804.shtml
|
[30] |
Taylor G I. The pressure and impulse of submarine explosion waves on plates[J]. Underwater Explosion Research, 1950, 1:1155-1173. http://cn.bing.com/academic/profile?id=bf06f90da043ffc534a99c874ebba82f&encoded=0&v=paper_preview&mkt=zh-cn
|
[31] |
Jin Z Y, Yin C Y, Chen Y, et al. An analytical method for the response of coated plates subjected to one-dimensional underwater weak shock wave[J]. Shock and Vibration, 2014, 2014:803751. http://cn.bing.com/academic/profile?id=56a87e3942d377ca126731e63428922c&encoded=0&v=paper_preview&mkt=zh-cn
|
[32] |
Bethe H A. On the theory of shock waves for an arbitrary equation of state[C]//Johnson J N, Chéret R. Classic Papers in Shock Compression Science. High-Pressure Shock Compression of Condensed Matter. New York, NY: Springer, 1998: 421-495.
|
[33] |
盖京波, 王善, 杨世全.冲击波在多层结构中的传播[J].火力与指挥控制, 2007, 32(3):12-13, 18. doi: 10.3969/j.issn.1002-0640.2007.03.004
Gai J B, Wang S, Yang S Q. Promulgation of impact wave in multilayer structure[J]. Fire Control & Command Control, 2007, 32(3):12-13, 18(in Chinese). doi: 10.3969/j.issn.1002-0640.2007.03.004
|
[34] |
汤文辉.冲击波物理[M].北京:科学出版社, 2011.
Tang W H. Shock wave physics[M]. Beijing:Science Press, 2011(in Chinese).
|
[35] |
Rayleigh L. VⅢ. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Journal the London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200):94-98.
|
[36] |
Gilmore F R. The growth and collapse of a spherical bubble in a viscous compressible liquid[R]. Pasadena, CA: California Institute of Technology, 1952.
|
[37] |
Keller J B, Kolodner I I. Damping of underwater explosion bubble oscillations[J]. Journal of Applied Physics, 1956, 27(10):1152-1161. doi: 10.1063/1.1722221
|
[38] |
Hao Y, Zhang Y H, Prosperetti A. Mechanics of gas-vapor bubbles[J]. Physical Review Fluids, 2017, 2(3):034303. doi: 10.1103/PhysRevFluids.2.034303
|
[39] |
Prosperetti A. Vapor bubbles[J]. Annual Review of Fluid Mechanics, 2017, 49(1):221-248. doi: 10.1146/annurev-fluid-010816-060221
|
[40] |
Lechner C, Koch M, Lauterborn W, et al. Pressure and tension waves from bubble collapse near a solid boundary:a numerical approach[J]. The Journal of the Acoustical Society of America, 2017, 142(6):3649-3659. doi: 10.1121/1.5017619
|
[41] |
Lauterborn W, Kurz T. Physics of bubble oscillations[J]. Reports on Progress in Physics, 2010, 73(10):106501. doi: 10.1088/0034-4885/73/10/106501
|
[42] |
Geers T L, Hunter K S. An integrated wave-effects model for an underwater explosion bubble[J]. The Journal of the Acoustical Society of America, 2002, 111(4):1584-1601. doi: 10.1121/1.1458590
|
[43] |
White L R, Carnie S L. The drag on a flattened bubble moving across a plane substrate[J]. Journal of Fluid Mechanics, 2012, 696:345-373. doi: 10.1017/jfm.2012.47
|
[44] |
Ida M. Bubble-bubble interaction:a potential source of cavitation noise[J]. Physical Review E, 2009, 79(1):016307. doi: 10.1103/PhysRevE.79.016307
|
[45] |
Wang C, Khoo B C. An indirect boundary element method for three-dimensional explosion bubbles[J]. Journal of Computational Physics, 2004, 194(2):451-480. doi: 10.1016/j.jcp.2003.09.011
|
[46] |
Zhang A M, Liu Y L. Improved three-dimensional bubble dynamics model based on boundary element method[J]. Journal of Computational Physics, 2015, 294:208-223. doi: 10.1016/j.jcp.2015.03.049
|
[47] |
Wang S P, Zhang A M, Liu Y L, et al. Bubble dynamics and its applications[J]. Journal of Hydrodynamics, 2018, 30(6):975-991. doi: 10.1007/s42241-018-0141-3
|
[48] |
Park J. A coupled Runge-Kutta discontinuous Galerkin-direct ghost fluid (RKDG-DGF) method to near-field early time underwater explosion (UNDEX)simulations[D]. Virginia, US: Virginia Polytechnic Institute and State University, 2008.
|
[49] |
Miller S T, Jasak H, Boger D A, et al. A pressure-based, compressible, two-phase flow finite volume method for underwater explosions[J]. Computers & Fluids, 2013, 87:132-143. http://cn.bing.com/academic/profile?id=cb70b5735c0196f2b6309574a4d72fbc&encoded=0&v=paper_preview&mkt=zh-cn
|
[50] |
Wang Q X, Yeo K S, Khoo B C, et al. Strong interaction between a buoyancy bubble and a free surface[J]. Theoretical and Computational Fluid Dynamics, 1996, 8(1):73-88. doi: 10.1007-BF00312403/
|
[51] |
Blake J R, Taib B B, Doherty G. Transient cavities near boundaries. part 1:rigid boundary[J]. Journal of Fluid Mechanics, 1986, 170:479-497. doi: 10.1017/S0022112086000988
|
[52] |
Blake J R, Taib B B, Doherty G. Transient cavities near boundaries. part 2:free surface[J]. Journal of Fluid Mechanics, 1987, 181:197-212. doi: 10.1017/S0022112087002052
|
[53] |
Wang P P, Zhang A M, Ming F R, et al. A novel non-reflecting boundary condition for fluid dynamics solved by smoothed particle hydrodynamics[J]. Journal of Fluid Mechanics, 2019, 860:81-114. doi: 10.1017/jfm.2018.852
|
[54] |
Ming F R, Zhang A M, Xue Y Z, et al. Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions[J]. Ocean Engineering, 2016, 117:359-382. doi: 10.1016/j.oceaneng.2016.03.040
|
[55] |
Shin Y S. Ship shock modeling and simulation for far-field underwater explosion[J]. Computers & Structures, 2004, 82(23/24/25/26):2211-2219. http://cn.bing.com/academic/profile?id=fbb75fddf9697c5f4e9e49b7834ad3fe&encoded=0&v=paper_preview&mkt=zh-cn
|
[56] |
Kwon Y W, Fox P K. Underwater shock response of a cylinder subjected to a side-on explosion[J]. Computers & Structures, 1993, 48(4):637-646. doi: 10.1016-0045-7949(93)90257-E/
|
[57] |
Rajendran R, Narasimhan K. Deformation and fracture behaviour of plate specimens subjected to underwater explosion-a review[J]. International Journal of Impact Engineering, 2006, 32(12):1945-1963. doi: 10.1016/j.ijimpeng.2005.05.013
|
[58] |
Zong Z, Zhao Y J, Li H T. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock[J]. Marine Structures, 2013, 31:24-43. doi: 10.1016/j.marstruc.2013.01.004
|
[59] |
Meng Z F, Cao X Y, Ming F R, et al. Study on the pressure characteristics of shock wave propagating across multilayer structures during underwater explosion[J]. Shock and Vibration, 2019, 2019:9026214. http://cn.bing.com/academic/profile?id=4b4d0c8dbcf2da6ae020b7264857e91b&encoded=0&v=paper_preview&mkt=zh-cn
|
[60] |
Jin Z Y, Yin C Y, Chen Y, et al. Coupling Runge-Kutta discontinuous Galerkin method to finite element method for compressible multi-phase flow interacting with a deformable sandwich structure[J]. Ocean Engineering, 2017, 130:597-610. doi: 10.1016/j.oceaneng.2016.12.013
|
[61] |
Zhang Z F, Wang C, Wang L K, et al. Underwater explosion of cylindrical charge near plates:analysis of pressure characteristics and cavitation effects[J]. International Journal of Impact Engineering, 2018, 121:91-105. doi: 10.1016/j.ijimpeng.2018.06.009
|
[62] |
叶曦, 初文华, 陈林, 等.近自由液面气泡与冲击波的相互作用[J].中国舰船研究, 2017, 12(5):90-96. doi: 10.3969/j.issn.1673-3185.2017.05.011
Ye X, Chu W H, Chen L, et al. Interaction between bubble near free surface and shock wave[J]. Chinese Journal of Ship Research, 2017, 12(5):90-96(in Chinese). doi: 10.3969/j.issn.1673-3185.2017.05.011
|
[63] |
Reyes A, Lee D, Graziani C, et al. A variable high-order shock-capturing finite difference method with GP-WENO[J]. Journal of Computational Physics, 2019, 381:189-217. doi: 10.1016/j.jcp.2018.12.028
|
[64] |
徐维铮, 吴卫国.爆炸波高精度数值计算程序开发及应用[J].中国舰船研究, 2017. 12(3):64-74. doi: 10.3969/j.issn.1673-3185.2017.03.010
Xu W Z, Wu W G. Development of in-house high-resolution hydrocode for assessment of blast waves and its application[J]. Chinese Journal of Ship Research, 2017, 12(3):64-74(in Chinese). doi: 10.3969/j.issn.1673-3185.2017.03.010
|
[65] |
Benson D J, Okazawa S. Contact in a multi-material Eulerian finite element formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39/40/41):4277-4298. http://cn.bing.com/academic/profile?id=31c1746dfa7a8a271550b26e61ccade6&encoded=0&v=paper_preview&mkt=zh-cn
|
[66] |
Benson D J. Computational methods in Lagrangian and Eulerian hydrocodes[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2/3):235-394. doi: 10.1016-0045-7825(92)90042-I/
|
[67] |
Liu Y L, Zhang A M, Tian Z L, et al. Investigation of free-field underwater explosion with Eulerian finite element method[J]. Ocean Engineering, 2018, 166:182-190. doi: 10.1016/j.oceaneng.2018.08.001
|
[68] |
Hirt C W, Nichols B D. Volume of fluid(VOF)method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225. doi: 10.1016/0021-9991(81)90145-5
|
[69] |
Koch M, Lechner C, Reuter F, et al. Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM[J]. Computers & Fluids, 2016, 126:71-90. http://cn.bing.com/academic/profile?id=2ceff644ab490c99ae2c40a17abe7ba1&encoded=0&v=paper_preview&mkt=zh-cn
|
[70] |
Jasak H, Gosman A D. Element residual error estimate for the finite volume method[J]. Computers & Fluids, 2003, 32(2):223-248. http://cn.bing.com/academic/profile?id=c01c2dd018e1562fe29559d472a08c3a&encoded=0&v=paper_preview&mkt=zh-cn
|
[71] |
Liu M B, Liu G R, Zong Z, et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology[J]. Computers & Fluids, 2003, 32(3):305-322. http://cn.bing.com/academic/profile?id=78358a2b72043bd2db9a95d83b7df716&encoded=0&v=paper_preview&mkt=zh-cn
|
[72] |
Jin Z Y, Yin C Y, Chen Y, et al. Dynamics of an underwater explosion bubble near a sandwich structure[J]. Journal of Fluids and Structures, 2019, 86:247-265. doi: 10.1016/j.jfluidstructs.2019.02.022
|
[73] |
李琛, 宗智, 王巍.水下爆炸冲击平台数值仿真设计研究[J].计算机测量与控制, 2018, 26(5):170-172, 176. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201805042
Li C, Zong Z, Wang W. Research on numerical simulations design of shock resistance platform[J]. Computer Measurement & Control, 2018, 26(5):170-172, 176(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201805042
|
[74] |
Ren S F, Song Y, Zhang A M, et al. Experimental study on dynamic buckling of submerged grid-stiffened cylindrical shells under intermediate-velocity impact[J]. Applied Ocean Research, 2018, 74:237-245. doi: 10.1016/j.apor.2018.02.018
|
[75] |
Liu M B, Liu G R. Smoothed particle hydrodynamics:a meshfree particle method[M]. Singapore:Scientific Publishing Co. Pte. Ltd, 2003.
|
[76] |
Huang C, Liu M B, Wang B, et al. Underwater explosion of slender explosives:directional effects of shock waves and structure responses[J]. International Journal of Impact Engineering, 2019, 130:266-280. doi: 10.1016/j.ijimpeng.2019.04.018
|
[77] |
汪浩, 王先洲, 刘均, 等.水下爆炸气泡对内加筋圆柱壳结构毁伤机理分析[J].噪声与振动控制, 2012(6):111-115. http://d.old.wanfangdata.com.cn/Periodical/zsyzdkz201206029
Wang H, Wang X Z, Liu J, et al. Damage mechanism analysis of inner-stiffened cylindrical shell subjected to underwater explosion bubble[J]. Noise and Vibration Control, 2012(6):111-115(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zsyzdkz201206029
|
[78] |
Zhang A M, Li S, Cui J. Study on splitting of a toroidal bubble near a rigid boundary[J]. Physics of Fluids, 2015, 27(6):062102. doi: 10.1063/1.4922293
|
[79] |
Popinet S, Zaleski S. Bubble collapse near a solid boundary:a numerical study of the influence of viscosity[J]. Journal of Fluid Mechanics, 2002, 464:137-163. doi: 10.1017/S002211200200856X
|
[80] |
Sankaranarayanan K, Kevrekidis I G, Sundaresan S, et al. A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations[J]. International Journal of Multiphase Flow, 2003, 29(1):109-116. doi: 10.1016/S0301-9322(02)00120-9
|
[81] |
Nagrath S, Jansen K E, Lahey Jr R T. Computation of incompressible bubble dynamics with a stabilized finite element level set method[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(42/43/44):4565-4587. http://cn.bing.com/academic/profile?id=a505641e6978ec014a0ab2aeae129499&encoded=0&v=paper_preview&mkt=zh-cn
|
[82] |
Marchandise E, Geuzaine P, Chevaugeon N, et al. A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics[J]. Journal of Computational Physics, 2007, 225(1):949-974. doi: 10.1016/j.jcp.2007.01.005
|
[83] |
金泽宇, 殷彩玉, 谌勇, 等.敷设橡胶圆板近场水下爆炸数值模拟[J].中国舰船研究, 2018, 13(3):72-76. http://www.ship-research.com/CN/abstract/abstract1813.shtml
Jin Z Y, Yin C Y, Chen Y, et al. Numerical simulation of rubber coating circular plates subjected to near-field underwater explosion[J]. Chinese Journal of Ship Research, 2018, 13(3):72-76(in Chinese). http://www.ship-research.com/CN/abstract/abstract1813.shtml
|
[84] |
Tian Z L, Liu Y L, Zhang A M, et al. Analysis of breaking and re-closure of a bubble near a free surface based on the Eulerian finite element method[J]. Computers & Fluids, 2018, 170:41-52. http://cn.bing.com/academic/profile?id=6379a0a462ff1db3581d1ac2f484df0c&encoded=0&v=paper_preview&mkt=zh-cn
|
[85] |
Li T, Wang S P, Li S, et al. Numerical investigation of an underwater explosion bubble based on FVM and VOF[J]. Applied Ocean Research, 2018, 74:49-58. doi: 10.1016/j.apor.2018.02.024
|
[86] |
Ye T, Shyy W, Chung J N. A fixed-grid, sharp-interface method for bubble dynamics and phase change[J]. Journal of Computational Physics, 2001, 174(2):781-815. doi: 10.1006/jcph.2001.6938
|
[87] |
Wang J X, Zong Z, Liu K, et al. Simulations of the dynamics and interaction between a floating structure and a near-field explosion bubble[J]. Applied Ocean Research, 2018, 78:50-60. doi: 10.1016/j.apor.2018.06.004
|
[88] |
Li T, Zhang A M, Wang S P, et al. Bubble interactions and bursting behaviors near a free surface[J]. Physics of Fluids, 2019, 31(4):042104. doi: 10.1063/1.5088528
|
[89] |
Li S, Zhang A M, Wang S P, et al. Transient interaction between a particle and an attached bubble with an application to cavitation in silt-laden flow[J]. Physics of Fluids, 2018, 30(8):082111. doi: 10.1063/1.5044237
|
[90] |
Grenier N, Le Touzé D, Colagrossi A, et al. Viscous bubbly flows simulation with an interface SPH model[J]. Ocean Engineering, 2013, 69:88-102. doi: 10.1016/j.oceaneng.2013.05.010
|
[91] |
Zhang A M, Sun P N, Ming F R. An SPH modeling of bubble rising and coalescing in three dimensions[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294:189-209. doi: 10.1016/j.cma.2015.05.014
|
[92] |
Zhang A M, Yang W S, Huang C, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination[J]. Computers & Fluids, 2013, 71:169-178. http://cn.bing.com/academic/profile?id=c2c5c094fc2baba2b52ec2bba517eef0&encoded=0&v=paper_preview&mkt=zh-cn
|
[93] |
Gupta A, Kumar R. Lattice Boltzmann simulation to study multiple bubble dynamics[J]. International Journal of Heat and Mass Transfer, 2008, 51(21/22):5192-5203. http://cn.bing.com/academic/profile?id=fc26d632e93b59a4797840f95630074d&encoded=0&v=paper_preview&mkt=zh-cn
|
[94] |
Chen G Q, Zhang A M, Huang X. On the interaction between bubbles and the free surface with high density ratio 3D lattice Boltzmann method[J]. Theoretical and Applied Mechanics Letters, 2018, 8(4):252-256. doi: 10.1016/j.taml.2018.04.006
|
[95] |
Cao X Y, Tao L, Zhang A M, et al. Smoothed particle hydrodynamics(SPH)model for coupled analysis of a damaged ship with internal sloshing in beam seas[J]. Physics of Fluids, 2019, 31(3):032103. doi: 10.1063/1.5079315
|
[96] |
Cao X Y, Ming F R, Zhang A M, et al. Multi-phase SPH modelling of air effect on the dynamic flooding of a damaged cabin[J]. Computers & Fluids, 2018, 163:7-19. http://cn.bing.com/academic/profile?id=9237439896f2c04b578cf86f139183bc&encoded=0&v=paper_preview&mkt=zh-cn
|
[97] |
姚熊亮, 刘文韬, 张阿漫, 等.水下爆炸气泡及其对结构毁伤研究综述[J].中国舰船研究, 2016, 11(1):36-45. doi: 10.3969/j.issn.1673-3185.2016.01.006
Yao X L, Liu W T, Zhang A M, et al. Review of the research on underwater explosion bubbles and the corresponding structural damage[J]. Chinese Journal of Ship Research, 2016, 11(1):36-45(in Chinese). doi: 10.3969/j.issn.1673-3185.2016.01.006
|
[98] |
程素秋, 宁永成, 张臣, 等.相似理论在水下爆炸模型试验中的应用[J].舰船科学技术, 2008, 30(3):95-100. doi: 10.3404/j.issn.1672-7649,2008.03.018
Cheng S Q, Ning Y C, Zhang C, et al. The applicability of scaling laws to underwater explosion models tests[J]. Ship Science and Technology, 2008, 30(3):95-100(in Chinese). doi: 10.3404/j.issn.1672-7649,2008.03.018
|
[99] |
荣吉利, 李健, 杨荣杰, 等.水下爆炸气泡脉动的实验及数值模拟[J].北京理工大学学报, 2008, 28(12):1035-1038, 1056. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb200812001
Rong J L, Li J, Yang R J, et al. Experiment and numerical simulation for the bubble impulse in underwater explosion[J]. Transactions of Beijing Institute of Technology, 2008, 28(12):1035-1038, 1056(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb200812001
|
[100] |
赵生伟, 张颖, 王占江, 等.小当量水中爆炸冲击波实验及数值模拟[J].实验力学, 2009, 24(3):259-263. http://d.old.wanfangdata.com.cn/Periodical/sylx200903014
Zhao S W, Zhang Y, Wang Z J, et al. Experiment and numerical simulation investigation of small scale underwater explosions[J]. Journal of Experimental Mechanics, 2009, 24(3):259-263(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/sylx200903014
|
[101] |
崔杰, 周塞北, 王逸, 等.减压条件下竖直边界附近气泡动力学行为数值与实验研究[J].兵工学报, 2015, 36(9):1696-1703. doi: 10.3969/j.issn.1000-1093.2015.09.014
Cui J, Zhou S B, Wang Y, et al. Experimental and numerical study of dynamic behavior of bubble around vertical boundary under hypobaric condition[J]. Acta Armamentarii, 2015, 36(9):1696-1703(in Chinese). doi: 10.3969/j.issn.1000-1093.2015.09.014
|
[102] |
于福临.实船非接触水下爆炸试验测试及响应特性研究[D].哈尔滨: 哈尔滨工程大学, 2016.
Yu F L. Research on ship shock trial and response characteristic for non-contact underwater explosion[D]. Harbin: Harbin Engineering University, 2016(in Chinese).
|
[103] |
王亚朋, 李晓杰, 张程娇, 等.柱状炸药水下冲击波连续测量研究[J].工程爆破, 2015, 21(4):17-19, 57. doi: 10.3969/j.issn.1006-7051.2015.04.004
Wang Y P, Li X J, Zhang C J, et al. Study on continuous measurement of underwater shock wave of cylindrical explosive[J]. Engineering Blasting, 2015, 21(4):17-19, 57(in Chinese). doi: 10.3969/j.issn.1006-7051.2015.04.004
|
[104] |
张显丕.水下爆炸压力测量不确定度研究[D].北京: 中国舰船研究院, 2014.
Zhang X P. Research on uncertainty of underwater explosion pressure measurement[D]. Beijing: China Ship Research & Development Academy, 2014(in Chinese).
|
[105] |
张兴明, 徐森, 高欣, 等.实验条件对水下爆炸实验结果的影响[J].高压物理学报, 2013, 27(4):587-591. http://cdmd.cnki.com.cn/Article/CDMD-90002-2009213390.htm
Zhang X M, Xu S, Gao X, et al. Effect of experimental conditions on the experimental results of underwater explosion[J]. Chinese Journal of High Pressure Physics, 2013, 27(4):587-591(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-90002-2009213390.htm
|
[106] |
朱锡, 牟金磊, 洪江波, 等.水下爆炸气泡脉动特性的试验研究[J].哈尔滨工程大学学报, 2007, 28(4):365-368. doi: 10.3969/j.issn.1006-7043.2007.04.001
Zhu X, Mu J L, Hong J B, et al. Experimental study of characters of bubble impulsion induced by underwater explosions[J]. Journal of Harbin Engineering University, 2007, 28(4):365-368(in Chinese). doi: 10.3969/j.issn.1006-7043.2007.04.001
|
[107] |
汪斌, 谭多望.水中爆炸形成水射流现象的实验研究[J].哈尔滨工程大学学报, 2010, 31(1):42-46. doi: 10.3969/j.issn.1006-7043.2010.01.007
Wang B, Tan D W. Water jet phenomena caused by underwater explosions[J]. Journal of Harbin Engineering University, 2010, 31(1):42-46(in Chinese). doi: 10.3969/j.issn.1006-7043.2010.01.007
|
[108] |
Cui P, Zhang A M, Wang S P. Small-charge underwater explosion bubble experiments under various boundary conditions[J]. Physics of Fluids, 2016, 28(11):117103. doi: 10.1063/1.4967700
|
[109] |
Vogel A, Lauterborn W. Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries[J]. The Journal of the Acoustical Society of America, 1988, 84(2):719-731. doi: 10.1121/1.396852
|
[110] |
Supponen O, Kobel P, Obreschkow D, et al. The inner world of a collapsing bubble[J]. Physics of Fluids, 2015, 27(9):091113. doi: 10.1063/1.4931098
|
[111] |
Cui P, Zhang A M, Wang S P, et al. Ice breaking by a collapsing bubble[J]. Journal of Fluid Mechanics, 2018, 841:287-309. doi: 10.1017/jfm.2018.63
|
[112] |
Zhang A M, Cui P, Cui J, et al. Experimental study on bubble dynamics subject to buoyancy[J]. Journal of Fluid Mechanics, 2015, 776:137-160. doi: 10.1017/jfm.2015.323
|
[113] |
De Graaf K L, Brandner P A, Penesis I. Bubble dynamics of a seismic airgun[J]. Experimental Thermal and Fluid Science, 2014, 55:228-238. doi: 10.1016/j.expthermflusci.2014.02.018
|
[114] |
Gong S W, Ohl S W, Klaseboer E, et al. Interaction of a spark-generated bubble with a two-layered composite beam[J]. Journal of Fluids and Structures, 2018, 76:336-348. doi: 10.1016/j.jfluidstructs.2017.09.008
|
[115] |
谢多夫L E.力学中的相似方法与量纲理论[M].沈青, 倪锄非, 李维新, 译.北京: 科学出版社, 1982.
Sjedov L E. Similitude methodology and theory of dimension in mechanics.[M].Shen Q, Ni C F, Li W X, Trans. Beijing: Science Press, 1982(in Chinese).
|
[116] |
张效慈.水下爆炸试验相似准则[J].船舶力学, 2007, 11(1):108-118. doi: 10.3969/j.issn.1007-7294.2007.01.014
Zhang X C. Similarity criteria for experiment of underwater explosion[J]. Journal of Ship Mechanics, 2007, 11(1):108-118(in Chinese). doi: 10.3969/j.issn.1007-7294.2007.01.014
|
[117] |
Zhang X C. Scaling law for experiment of underwater explosion with several independent geometrical scales[J]. Journal of Ship Mechanics, 2008, 12(3):490-499. http://cn.bing.com/academic/profile?id=15c7bc19b7a7ca8de76ca973ae82d619&encoded=0&v=paper_preview&mkt=zh-cn
|
[118] |
Hu J, Chen Z Y, Zhang X D, et al. Underwater explosion in centrifuge, part I:validation and calibration of scaling laws[J]. Science China Technological Sciences, 2017, 60(11):1638-1657. doi: 10.1007/s11431-017-9083-0
|
[119] |
Long Y, Zhou H Y, Liang X Q, et al. Underwater explosion in centrifuge, part Ⅱ:dynamic responses of defensive steel plate[J]. Science China Technological Sciences, 2017, 60(12):1941-1957. doi: 10.1007/s11431-017-9107-2
|
[120] |
刘文韬, 姚熊亮, 李帅, 等.离心机水下爆炸缩比实验原理及数值研究[J].爆炸与冲击, 2016, 36(6):789-796. http://d.old.wanfangdata.com.cn/Periodical/bzycj201606008
Liu W T, Yao X L, Li S, et al. Scaled-down underwater explosion model on a centrifuge apparatus[J]. Explosion and Shock Waves, 2016, 36(6):789-796(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bzycj201606008
|
[121] |
方斌, 朱锡, 张振华.水下爆炸冲击波载荷作用下船底板架的塑性动力响应[J].哈尔滨工程大学学报, 2008, 29(4):326-331. doi: 10.3969/j.issn.1006-7043.2008.04.002
Fang B, Zhu X, Zhang Z H. Plastic dynamic response of ship hull grillage to underwater blast loading[J]. Journal of Harbin Engineering University, 2008, 29(4):326-331(in Chinese). doi: 10.3969/j.issn.1006-7043.2008.04.002
|
[122] |
张振华, 朱锡.刚塑性板在柱状炸药接触爆炸载荷作用下的花瓣开裂研究[J].船舶力学, 2004, 8(5):113-119. doi: 10.3969/j.issn.1007-7294.2004.05.015
Zhang Z H, Zhu X. Petaling of rigid plastic plate under contact explosive loading of cylindrical dynamite[J]. Journal of Ship Mechanics, 2004, 8(5):113-119(in Chinese). doi: 10.3969/j.issn.1007-7294.2004.05.015
|
[123] |
Wierzbicki T. Petalling of plates under explosive and impact loading[J]. International Journal of Impact Engineering, 1999, 22(9/10):935-954. http://cn.bing.com/academic/profile?id=6e15a9bf9c54515a6f99ea7632e49e51&encoded=0&v=paper_preview&mkt=zh-cn
|
[124] |
Wang H, Cheng Y S, Liu J, Gan L. Damage evaluation of a simplified hull girder subjected to underwater explosion load:a semi-analytical model[J]. Marine Structures, 2016, 45:43-62. doi: 10.1016/j.marstruc.2015.10.005
|
[125] |
唐廷, 朱锡, 韦灼彬, 等.水下爆炸冲击波作用下空气背衬平板的运动[J].兵工学报, 2012, 33(7):831-835. http://d.old.wanfangdata.com.cn/Periodical/bgxb201207012
Tang T, Zhu X, Wei Z B, et al. Movement of air backed plane plates subjected to shock wave of underwater explosion[J]. Acta Armamentarii, 2012, 33(7):831-835(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bgxb201207012
|
[126] |
谌勇, 唐平, 汪玉, 等.刚塑性圆板受水下爆炸载荷时的动力响应[J].爆炸与冲击, 2005, 25(1):90-96. doi: 10.3321/j.issn:1001-1455.2005.01.017
Chen Y, Tang P, Wang Y, et al. Dynamic response analysis of rigid-plastic circular plate under underwater blast loading[J]. Explosion and Shock Waves, 2005, 25(1):90-96(in Chinese). doi: 10.3321/j.issn:1001-1455.2005.01.017
|
[127] |
王刚, 陈铁云.圆柱壳在水下径向爆炸载荷下的弹塑性动力响应[J].上海交通大学学报, 1997, 31(11):108-113. http://cdmd.cnki.com.cn/Article/CDMD-10487-2009033857.htm
Wang G, Chen T Y. Elastoplastic dynamic response of a cylindrical shell to underwater radial explosive loading[J]. Journal of Shanghai Jiaotong University, 1997, 31(11):108-113(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10487-2009033857.htm
|
[128] |
余晓菲, 刘土光, 余宏坤.圆柱壳在水下爆炸载荷下的流-固耦合响应分析[J].振动与冲击, 2007, 26(7):125-128, 186. doi: 10.3969/j.issn.1000-3835.2007.07.030
Yu X F, Liu T G, Yu H K. Dynamic response of a cylindrical shell subject to underwater explosive loading[J]. Journal of Vibration and Shock, 2007, 26(7):125-128, 186(in Chinese). doi: 10.3969/j.issn.1000-3835.2007.07.030
|
[129] |
张阿漫, 王诗平, 汪玉, 等.水下爆炸对舰船结构损伤特征研究综述[J].中国舰船研究, 2011, 6(3):1-7. doi: 10.3969/j.issn.1673-3185.2011.03.001
Zhang A M, Wang S P, Wang Y, et al. Advances in the research of characteristics of warship structural damage due to underwater explosion[J]. Chinese Journal of Ship Research, 2011, 6(3):1-7(in Chinese). doi: 10.3969/j.issn.1673-3185.2011.03.001
|
[130] |
牟金磊, 朱锡, 黄晓明.水下爆炸载荷作用下舰船结构响应研究综述[J].中国舰船研究, 2011, 6(2):1-8. doi: 10.3969/j.issn.1673-3185.2011.02.001
Mu J L, Zhu X, Huang X M. Advances in the research of ship structural response subjected to underwater explosions[J]. Chinese Journal of Ship Research, 2011, 6(2):1-8(in Chinese). doi: 10.3969/j.issn.1673-3185.2011.02.001
|
[131] |
胡春红, 冯新, 李昕, 等.水下爆炸作用下结构响应的数值计算研究综述[J].工程爆破, 2007, 13(1):28-34, 19. doi: 10.3969/j.issn.1006-7051.2007.01.007
Hu C H, Feng X, Li X, et al. Review of numerical simulation of structural responses to underwater explosion[J]. Engineering Blasting, 2007, 13(1):28-34, 19(in Chinese). doi: 10.3969/j.issn.1006-7051.2007.01.007
|
[132] |
Geers T L. Doubly asymptotic approximations for transient motions of submerged structures[J]. The Journal of the Acoustical Society of America, 1978, 64(5):1500-1508. doi: 10.1121/1.382093
|
[133] |
Woyak D B. Modeling submerged structures loaded by underwater explosions with ABAQUS/Explicit[C]//ABAQUS Users' Conference.[S.l.: s.n.], 2002.
|
[134] |
Webster K G. Investigation of close proximity underwater explosion effects on a ship-like structure using the multi-material arbitrary Lagrangian Eulerian finite element method[D]. Virginia: Virginia Polytechnic Institute and State University, 2007.
|
[135] |
Zhang A M, Sun P N, Ming F R, et al. Smoothed particle hydrodynamics and its applications in fluid-structure interactions[J]. Journal of Hydrodynamics, 2017, 29(2):187-216. doi: 10.1016/S1001-6058(16)60730-8
|
[136] |
Zhang A M, Yang W S, Yao X L. Numerical simulation of underwater contact explosion[J]. Applied Ocean Research, 2012, 34:10-20. doi: 10.1016/j.apor.2011.07.009
|
[137] |
Liu M B, Liu G R. Smoothed particle hydrodynamics(SPH):an overview and recent developments[J]. Archives of Computational Methods in Engineering, 2010, 17(1):25-76. doi: 10.1007/s11831-010-9040-7
|
[138] |
Du Y, Ma L, Zheng J Y, et al. Coupled simulation of explosion-driven fracture of cylindrical shell using SPH-FEM method[J]. International Journal of Pressure Vessels and Piping, 2016, 139/140:28-35. doi: 10.1016/j.ijpvp.2016.03.001
|
[139] |
Peng Y X, Zhang A M, Ming F R. A thick shell model based on reproducing kernel particle method and its application in geometrically nonlinear analysis[J]. Computational Mechanics, 2018, 62(3):309-321. doi: 10.1007/s00466-017-1498-9
|
[140] |
Peng Y X, Zhang A M, Li S F, et al. A beam formulation based on RKPM for the dynamic analysis of stiffened shell structures[J]. Computational Mechanics, 2019, 63(1):35-48. http://cn.bing.com/academic/profile?id=61459dfdc96c2f0615fcd4d42dcde174&encoded=0&v=paper_preview&mkt=zh-cn
|
[141] |
张臣, 金辉.实船爆炸试验中近水面压力测量与分析[J].水雷战与舰船防护, 2012, 20(4):41-45. http://www.cnki.com.cn/Article/CJFDTOTAL-SLZH201204013.htm
Zhang C, Jin H. Measurement and analysis of near surface pressure in ship explosion test[J]. Mine Warfare & Ship Self-Defence, 2012, 20(4):41-45(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SLZH201204013.htm
|
[142] |
汪玉, 张磊, 史少华, 等.舰船水下非接触爆炸抗冲击技术综述[J].科技导报, 2009, 27(14):19-22. doi: 10.3321/j.issn:1000-7857.2009.14.004
Wang Y, Zhang L, Shi S H, et al. Review of shock-resistance technology of naval ship for underwater non-contact explosion[J]. Science & Technology Review, 2009, 27(14):19-22(in Chinese). doi: 10.3321/j.issn:1000-7857.2009.14.004
|
[143] |
吴静波, 汪玉, 李兆俊, 等.实船水下爆炸冲击试验测量技术[J].科技导报, 2009, 27(14):42-47. doi: 10.3321/j.issn:1000-7857.2009.14.009
Wu J B, Wang Y, Li Z J, et al. Measurement technology in the underwater explosions tests of ships[J]. Science & Technology Review, 2009, 27(14):42-47(in Chinese). doi: 10.3321/j.issn:1000-7857.2009.14.009
|
[144] |
杜志鹏, 张磊, 赵鹏铎.实尺度舰船舱内炮弹静爆试验方法[J].中国舰船研究, 2018. 13(3):103-109. http://www.ship-research.com/CN/abstract/abstract1818.shtml
Du Z P, Zhang L, Zhao P D. Test method for static explosion of naval artillery shell in full-scale warship cabin[J]. Chinese Journal of Ship Research, 2018, 13(3):103-109(in Chinese). http://www.ship-research.com/CN/abstract/abstract1818.shtml
|
[145] |
陈辉, 李玉节, 潘建强, 等.水下爆炸条件下不同装药对水面舰船冲击环境的影响试验研究[J].振动与冲击, 2011, 30(7):16-20. doi: 10.3969/j.issn.1000-3835.2011.07.004
Chen H, Li Y J, Pan J Q, et al. Tests for influence of different charges in UNDEX on shock environment of surface warships[J]. Journal of Vibration and Shock, 2011, 30(7):16-20(in Chinese). doi: 10.3969/j.issn.1000-3835.2011.07.004
|
[146] |
朱锡, 张振华, 刘润泉, 等.水面舰艇舷侧防雷舱结构模型抗爆试验研究[J].爆炸与冲击, 2004, 24(2):133-139. doi: 10.3321/j.issn:1001-1455.2004.02.006
Zhu X, Zhang Z H, Liu R Q, et al. Experimental study on the explosion resistance of cabin near shipboard of surface warship subjected to underwater contact explosion[J]. Explosion and Shock Waves, 2004, 24(2):133-139(in Chinese). doi: 10.3321/j.issn:1001-1455.2004.02.006
|
[147] |
朱锡, 白雪飞, 黄若波, 等.船体板架在水下接触爆炸作用下的破口试验[J].中国造船, 2003, 44(1):46-52. doi: 10.3969/j.issn.1000-4882.2003.01.007
Zhu X, Bai X F, Huang R B, et al. Crevasse experiment research of plate membrance in vessels subjected to underwater contact explosion[J]. Shipbuilding of China, 2003, 44(1):46-52(in Chinese). doi: 10.3969/j.issn.1000-4882.2003.01.007
|
[148] |
Zhang A M, Wang S P, Huang C, et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics[J]. European Journal of Mechanics-B/Fluids, 2013, 42:69-91. doi: 10.1016/j.euromechflu.2013.06.008
|
[149] |
张振华, 陈平毅, 漆万鹏, 等.舰船局部板架结构在水下爆炸冲击波下动态响应的相似律研究[J].振动与冲击, 2008, 27(6):81-86. doi: 10.3969/j.issn.1000-3835.2008.06.018
Zhang Z H, Chen P Y, Qi W P, et al. Scaling law of dynamic response of stiffened plates for a ship subjected to under water shock[J]. Journal of Vibration and Shock, 2008, 27(6):81-86(in Chinese). doi: 10.3969/j.issn.1000-3835.2008.06.018
|
[150] |
刘建湖, 吴有生, 王海坤, 等.载荷内部子空间缩比方法在水面舰船水下爆炸鞭状响应试验上的应用[J].船舶力学, 2013, 17(3):257-267. http://d.old.wanfangdata.com.cn/Periodical/cblx201303008
Liu J H, Wu Y S, Wang H K, et al. Application of the loading inherent subspace scaling method on the whipping responses test of a surface ship to underwater explosions[J]. Journal of Ship Mechanics, 2013, 17(3):257-267(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/cblx201303008
|