Rui ZHAO, Jian XU, Xianbo XIANG, Guohua XU. A review of path planning and cooperative control for MAUV systems[J]. Chinese Journal of Ship Research, 2018, 13(6): 58-65. doi: 10.19693/j.issn.1673-3185.01028
Citation: Rui ZHAO, Jian XU, Xianbo XIANG, Guohua XU. A review of path planning and cooperative control for MAUV systems[J]. Chinese Journal of Ship Research, 2018, 13(6): 58-65. doi: 10.19693/j.issn.1673-3185.01028

A review of path planning and cooperative control for MAUV systems

doi: 10.19693/j.issn.1673-3185.01028
  • Received Date: 2017-06-19
    Available Online: 2018-05-18
  • Publish Date: 2018-12-03
    © 2018 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • The Autonomous Underwater Vehicle(AUV)is an important tool for ocean exploration and the exploitation of underwater resources, which plays important roles in civilian and military fields. Along with the research progress of AUVs, it has become the current development trend to cooperate on completing underwater operations by constructing the Multiple Autonomous Underwater Vehicle(MAUV)system. The MAUV system has important theoretical research significance and practical value for improving the intelligence level of underwater vehicles and developing marine equipment. In this paper, the state of the art of the MAUV is presented from the point of view of practical application and scientific research. The main methods of path planning and cooperative control for MAUV are illustrated, including artificial intelligence and formation control techniques. Finally, the research trends of MAUV are also discussed and the main topic is highlighted.
  • loading
  • [1]
    徐玉如, 苏玉民, 庞永杰.海洋空间智能无人运载器技术发展展望[J].中国舰船研究, 2006, 1(3):1-4. doi: 10.3969/j.issn.1673-3185.2006.03.001

    XU Y R, SU Y M, PANG Y J. Expectation of the development in the technology on ocean space intelligent unmanned vehicles[J]. Chinese Journal of Ship Research, 2006, 1(3):1-4(in Chinese). doi: 10.3969/j.issn.1673-3185.2006.03.001
    [2]
    SIMPKINS C A. Introduction to autonomous manipulation:case study with an underwater robot, SAUVIM[J]. IEEE Robotics and Automation Magazine, 2014, 21(4):109-110. doi: 10.1109/MRA.2014.2379031
    [3]
    向先波.二阶非完整性水下机器人的路径跟踪与协调控制研究[D].武汉: 华中科技大学, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D153157

    XIANG X B. Research on path following and coordinated control for second-order nonholonomic AUVs[D]. Wuhan: Huazhong University of Science and Technology, 2010(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D153157
    [4]
    DIERCKS A R, WOOLSEY M, JARNAGIN R, et al. Site reconnaissance surveys for oil spill research using deep-sea AUVs[C]//Proceedings of 2013 Oceans-San Diego. San Diego, CA: IEEE, 2013: 1-5.
    [5]
    WERNLI R L. AUV commercialization-who's leading the pack[C]//Proceedings of Oceans 2000 MTS/IEEE Conference and Exhibition. Providence, Rhode Island: IEEE, 2000: 391-395.
    [6]
    KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995: 1942-1948.
    [7]
    EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE, 1995: 39-43.
    [8]
    XIANG X B, JOUVENCEL B, PARODI O. Coordinated formation control of multiple autonomous underwater vehicles for pipeline inspection[J]. International Journal of Advanced Robotic Systems, 2010, 7(1):75-84. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ed635c69a4fa58f4eba69ff52f4c83ba
    [9]
    OSTAFICHUK P M. AUV hydrodynamics and modelling for improved control[D]. Canada: The University of British Columbia, 2004.
    [10]
    ANTONELLI G. Underwater robots[M]. 3rd ed. Berlin:Springer, 2013.
    [11]
    HEALEY A J. Application of formation control for multi-vehicle robotic minesweeping[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, USA: IEEE, 2001: 1497-1502.
    [12]
    ZHAO R, XIANG X B, YU C Y, et al. Coordinated formation control of autonomous underwater vehicles based on leader-follower strategy[C]//Proceedings of Oceans 2016 MTS/IEEE Monterey. Monterey, USA: IEEE, 2016: 1-5.
    [13]
    姜大鹏.多水下机器人协调控制技术研究[D].哈尔滨: 哈尔滨工程大学, 2011.

    JIANG D P. Research on coordinated control technology for multiple autonomous underwater vehicles[D]. Harbin: Harbin Engineering University, 2011(in Chinese).
    [14]
    KOO T J, LI R Q, QUOTTRUP M M, et al. A framework for multi-robot motion planning from temporal logic specifications[J]. Science China Information Sciences, 2012, 55(7):1675-1692. doi: 10.1007/s11432-012-4605-8
    [15]
    WOITHE H C, KREMER U. Trilobite G:a programming architecture for autonomous underwater vehicles[J]. ACM SIGPLAN Notices, 2015, 50(5):14. doi: 10.1145/2670529.2754971
    [16]
    CUI R X, YAN W S, XU D M. Synchronization of multiple autonomous underwater vehicles without velocity measurements[J]. Science China Information Sciences, 2012, 55(7):1693-1703. doi: 10.1007/s11432-012-4579-6
    [17]
    PAULL L, SAEEDI S, SETO M, et al. AUV navigation and localization:a review[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1):131-149. doi: 10.1109/JOE.2013.2278891
    [18]
    MATSUDA T, MAKI T, SAKAMAKI T, et al. Performance analysis on a navigation method of multiple AUVs for wide area survey[J]. Marine Technology Society Journal, 2012, 46(2):45-55. doi: 10.4031/MTSJ.46.2.6
    [19]
    GKIKOPOULI A, NIKOLAKOPOULOS G, MANESIS S. A survey on underwater wireless sensor networks and applications[C]//Proceedings of the 20th Mediterranean Conference on Control and Automation. Barcelona, Spain: IEEE, 2012: 1147-1154.
    [20]
    AKYILDIZ I F, WANG P, LIN S C. Softwater:software-defined networking for next-generation underwater communication systems[J]. Ad Hoc Networks, 2016, 46:1-11. doi: 10.1016/j.adhoc.2016.02.016
    [21]
    YOON S, AZAD A K, OH H, et al. AURP:an AUV-aided underwater routing protocol for underwater acoustic sensor networks[J]. Sensors, 2012, 12(2):1827-1845. doi: 10.3390/s120201827
    [22]
    SUN Y, ZHANG R. Research on global path planning for AUV based on GA[M]//ZHAGN T B. Mechanical Engineering and Technology. Berlin: Springer, 2012: 311-318.
    [23]
    王刚.基于极限学习机的AUV路径规划的研究[D].青岛: 中国海洋大学, 2013.

    WANG G. The research of path planning based on ELM for AUV[D]. Qingdao: Ocean University of China, 2013(in Chinese).
    [24]
    HUANG H, ZHU D Q, DING F. Dynamic task assignment and path planning for multi-AUV system in variable ocean current environment[J]. Journal of Intelligent and Robotic Systems, 2014, 74(3/4):999-1012. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-KZJC201205001722.htm
    [25]
    ZHU D Q, HUANG H, YANG S X. Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace[J]. IEEE Transactions on Cybernetics, 2013, 43(2):504-514. doi: 10.1109/TSMCB.2012.2210212
    [26]
    MANINGO J M Z, FAELDEN G E U, NAKANO R C S, et al. Obstacle avoidance for quadrotor swarm using artificial neural network self-organizing map[C]//Proceedings of 2015 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management. Cebu City, Philippines: IEEE, 2015: 1-7.
    [27]
    SUTANTYO D, LEVI P, MÖSLINGER C, et al. Collective-adaptive Lévy flight for underwater multi-robot exploration[C]//Proceedings of 2013 IEEE International Conference on Mechatronics and Automation. Takamatsu, Japan: IEEE, 2013: 456-462.
    [28]
    HUANG Q, ZHENG G L. Route optimization for autonomous container truck based on rolling window[J]. International Journal of Advanced Robotic Systems, 2016, 13(3):112. doi: 10.5772/64116
    [29]
    LIU J H, YANG J G, LIU H P, et al. An improved ant colony algorithm for robot path planning[J]. Soft Computing, 2016, 1(11):1-11. DOI: 10.1007/s00500-016-2161-7.
    [30]
    徐勇.多平台协同搜索水雷效能分析[J].指挥控制与仿真, 2013, 35(3):81-83. doi: 10.3969/j.issn.1673-3819.2013.03.021

    XU Y. The effectiveness analysis of multiple-platform cooperative mine searching[J]. Command Control and Simulation, 2013, 35(3):81-83(in Chinese). doi: 10.3969/j.issn.1673-3819.2013.03.021
    [31]
    FAVARO F, BROLO L, TOSO G, et al. A study on remote data retrieval strategies in underwater acoustic networks[C]//Proceedings of Oceans 2013-San Diego. San Diego, CA: IEEE, 2013: 1-8.
    [32]
    KARTHIK S. Underwater vehicle for surveillance with navigation and swarm network communication[J]. Indian Journal of Science and Technology, 2014, 7(6):22-31. http://cn.bing.com/academic/profile?id=7183b9499e8942b59e0d670e0ee101ab&encoded=0&v=paper_preview&mkt=zh-cn
    [33]
    CAO X, ZHU D Q. Multi-AUV underwater cooperative search algorithm based on biological inspired neurodynamics model and velocity synthesis[J]. The Journal of Navigation, 2015, 68(6):1075-1087. doi: 10.1017/S0373463315000351
    [34]
    YING L L, HE B, ZHANG S J, et al. A modified fast SLAM with simple particle swarm optimization and consistent mapping for AUVs[C]//Proceedings of Oceans 2014-Taipei. Taipei, China: IEEE, 2014: 1-5.
    [35]
    李爱国, 覃征, 鲍复民, 等.粒子群优化算法[J].计算机工程与应用, 2002, 38(21):1-3, 17. doi: 10.3321/j.issn:1002-8331.2002.21.001

    LI A G, QIN Z, BAO F M, et al. Particle swarm optimization algorithms[J]. Computer Engineering and Applications, 2002, 38(21):1-3, 17(in Chinese). doi: 10.3321/j.issn:1002-8331.2002.21.001
    [36]
    ZENG Z, LAMMAS A, SAMMUT K, et al. Path planning for rendezvous of multiple AUVs operating in a variable ocean[C]//Proceedings of the 4th Annual IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Hong Kong, China: IEEE, 2014: 451-456.
    [37]
    朱亦峰.多AUV协同作业中的互定位方法研究[D].哈尔滨: 哈尔滨工程大学, 2009.

    ZHU Y F. Research of intercommunication method of multi-AUV cooperation[D]. Harbin: Harbin Engineering University, 2009(in Chinese).
    [38]
    CONSOLINI L, MORBIDI F, PRATTICHIZZO D, et al. Leader-follower formation control of nonholonomic mobile robots with input constraints[J]. Automatica, 2008, 44(5):1343-1349. doi: 10.1016/j.automatica.2007.09.019
    [39]
    彭周华.舰船编队的鲁棒自适应控制[D].大连: 大连海事大学, 2011.

    PENG Z H. Robust adaptive control for formations of marine surface vessels[D]. Dalian: Dalian Maritime University, 2011(in Chinese).
    [40]
    CAO Z Q, XIE L J, ZHANG B, et al. Formation constrained multi-robot system in unknown environments[C]//Proceedings of 2003 IEEE International Conference on Robotics and Automation. Taipei, China: IEEE, 2013: 735-740.
    [41]
    LIANG Y, LEE H H. Decentralized formation control and obstacle avoidance for multiple robots with nonholonomic constraints[C]//Proceedings of 2006 American Control Conference. Minneapolis, USA: IEEE, 2006: 6.
    [42]
    LEONARD N E, FIORELLI E. Virtual leaders, artificial potentials and coordinated control of groups[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, USA: IEEE, 2011: 2968-2973.
    [43]
    ROUT R, SUBUDHI B. A backstepping approach for the formation control of multiple autonomous underwater vehicles using a leader-follower strategy[J]. Journal of Marine Engineering and Technology, 2016, 15(1):38-46. doi: 10.1080/20464177.2016.1173268
    [44]
    石桂芬, 方华京.基于相邻矩阵的多机器人编队容错控制[J].华中科技大学学报(自然科学版), 2005, 33(3):39-42. doi: 10.3321/j.issn:1671-4512.2005.03.013

    SHI G F, FANG H J. Fault tolerance of multi-robot formation based on adjacency matrix[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2005, 33(3):39-42. doi: 10.3321/j.issn:1671-4512.2005.03.013
    [45]
    WADA M, SHIMONO T. Formation control of multiple mobile robots based on the modal decomposition by discrete Fourier series expansion[C]//Proceedings of the 7th International Conference on Information and Automation for Sustainability. Colombo, Sri Lanka: IEEE, 2014: 1-6.
    [46]
    CHEN X P, SERRANI A, OZBAY H. Control of leader-follower formations of terrestrial UAVs[C]//Proceedings of the 42nd IEEE International Conference on Decision and Control. Hawaii, USA: IEEE, 2013: 498-503.
    [47]
    DESAI J P, OSTROWSKI J P, KUMAR V. Modeling and control of formations of nonholonomic mobile robots[J]. IEEE Transactions on Robotics and Automation, 2011, 17(6):905-908. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4487a9a334c2adaf9fc669b37e266bf7
    [48]
    ZHANG Y M, MEHRJERDI H. A survey on multiple unmanned vehicles formation control and coordination: normal and fault situations[C]//Proceedings of 2013 International Conference on Unmanned Aircraft Systems. Atlanta, USA: IEEE, 2013: 1087-1096.
    [49]
    OH K K, PARK M C, AHN H S. A survey of multi-agent formation control[J]. Automatica, 2015, 53:424-440. doi: 10.1016/j.automatica.2014.10.022
    [50]
    OU M Y, DU H B, LI S H. Finite-time formation control of multiple nonholonomic mobile robots[J]. International Journal of Robust and Nonlinear Control, 2014, 24(1):140-165. doi: 10.1002/rnc.v24.1
    [51]
    ISMAIL Z H, SARMAN N, DUNNIGAN M W. Dynamic region boundary-based control scheme for multiple autonomous underwater vehicles[C]//Proceedings of Oceans 2012-Yeosu. Yeosu, South Korea: IEEE, 2012: 1-6.
    [52]
    VASARHELYI G, VIRAGH C, SOMORJAI G, et al. Outdoor flocking and formation flight with autonomous aerial robots[C]//Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, USA: IEEE, 2014: 3866-3873.
    [53]
    彭学伦.水下机器人的研究现状与发展趋势[J].机器人技术与应用, 2004, 15(4):43-47. doi: 10.3969/j.issn.1004-6437.2004.04.008

    PENG X L. Research status and development of underwater robot[J]Robot Technique and Application, 2004, 15(4):43-47(in Chinese). doi: 10.3969/j.issn.1004-6437.2004.04.008
    [54]
    PETRES C, PAILHAS Y, PATRON P, et al. Path planning for autonomous underwater vehicles[J]. IEEE Transactions on Robotics, 2007, 23(2):331-341. doi: 10.1109/TRO.2007.895057
    [55]
    杨燕.水下航行器编队运动规划与稳定性研究[D].天津: 天津大学, 2012.

    YANG Y. Motion planning and stabilization of multi-vehicle formation[D]. Tianjin: Tianjin University, 2012(in Chinese).
    [56]
    ZHAO J B, ZOU Q, LI L, et al. Tool path planning based on conformal parameterization for meshes[J]. Chinese Journal of Aeronautics, 2015, 28(5):1555-1563. doi: 10.1016/j.cja.2015.06.005
    [57]
    陈世明, 化俞新, 祝振敏, 等.邻域交互结构优化的多智能体快速蜂拥控制算法[J].自动化学报, 2015, 41(12):2092-2099. http://www.cqvip.com/QK/90250X/201512/667163359.html

    CHEN S M, HUA Y X, ZHU Z M, et al. Fast flocking algorithm for multi-agent systems by optimizing local interactive topology[J]. Acta Automatica Sinica, 2015, 41(12):2092-2099(in Chinese). http://www.cqvip.com/QK/90250X/201512/667163359.html
    [58]
    赵丹, 胡爱花, 刘丹.牵引控制间歇通讯多智能体网络的一致性[J].信息与控制, 2017, 46(2):238-242. http://d.old.wanfangdata.com.cn/Periodical/xxykz201702018

    ZHAO D, HU A H, LIU D. Consensus of multiagent networks with intermittent communication via pinning control[J]Information and Control, 2017, 46(2):238-242(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xxykz201702018
    [59]
    PENG Z H, WANG D, SHI Y, et al. Containment control of networked autonomous underwater vehicles with model uncertainty and ocean disturbances guided by multiple leaders[J]. Information Sciences, 2015, 316:163-179. doi: 10.1016/j.ins.2015.04.025
    [60]
    PENG Z H, WANG J, WANG D. Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5):3831-3839. doi: 10.1109/TIE.2017.2652346
    [61]
    PENG Z H, WANG J, WANG D. Containment maneuvering of marine surface vehicles with multiple parameterized paths via spatial-temporal decoupling[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2):1026-1036. doi: 10.1109/TMECH.2016.2632304
    [62]
    陈杨杨, 田玉平.多智能体沿多条给定路径编队运动的有向协同控制[J].自动化学报, 2009, 35(12):1541-1549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000409136

    CHEN Y Y, TIAN Y P. Directed coordinated control for multi-agent formation motion on a set of given curves[J]. Acta Automatica Sinica, 2009, 35(12):1541-1549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000409136
    [63]
    戴国忠, 王怀龙.时延约束下多智能体编队的集结控制[J].舰船电子工程, 2017, 37(5):25-27, 108. doi: 10.3969/j.issn.1672-9730.2017.05.007

    DAI G Z, WANG H L. Rendezvous control for the multi-agent formation with time delay[J]Ship Electronic Engineering, 2017, 37(5):25-27, 108(in Chinese). doi: 10.3969/j.issn.1672-9730.2017.05.007
    [64]
    BRADY M. Artificial intelligence and robotics[J]. Artificial Intelligence, 1985, 26(1):79-121. doi: 10.1016/0004-3702(85)90013-X
    [65]
    FERBER J. Multi-agent systems:an introduction to distributed artificial intelligence[M]. Boston, USA:Addison-Wesley, 1999.
    [66]
    QARABAQI P, STOJANOVIC M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4):701-717. doi: 10.1109/JOE.2013.2278787
    [67]
    LI S H, WANG X Y. Finite-time consensus and collision avoidance control algorithms for multiple AUVs[J]. Automatica, 2013, 49(11):3359-3367. doi: 10.1016/j.automatica.2013.08.003
  • 2018-6-58_en.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (377) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return