留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶基座阻尼材料敷设优化及实验研究

李磊鑫 刘朝骏 陈炉云

李磊鑫, 刘朝骏, 陈炉云. 船舶基座阻尼材料敷设优化及实验研究[J]. 中国舰船研究, 2017, 12(6): 86-91. doi: 10.3969/j.issn.1673-3185.2017.06.013
引用本文: 李磊鑫, 刘朝骏, 陈炉云. 船舶基座阻尼材料敷设优化及实验研究[J]. 中国舰船研究, 2017, 12(6): 86-91. doi: 10.3969/j.issn.1673-3185.2017.06.013
LI Leixin, LIU Chaojun, CHEN Luyun. Ship mounting structure damping material optimization distribution and experimental study[J]. Chinese Journal of Ship Research, 2017, 12(6): 86-91. doi: 10.3969/j.issn.1673-3185.2017.06.013
Citation: LI Leixin, LIU Chaojun, CHEN Luyun. Ship mounting structure damping material optimization distribution and experimental study[J]. Chinese Journal of Ship Research, 2017, 12(6): 86-91. doi: 10.3969/j.issn.1673-3185.2017.06.013

船舶基座阻尼材料敷设优化及实验研究

doi: 10.3969/j.issn.1673-3185.2017.06.013
详细信息
    作者简介:

    李磊鑫, 男, 1980年生, 硕士, 高级工程师

    通信作者:

    陈炉云(通信作者), 男, 1975年生, 博士, 助理研究员。研究方向:船舶结构动力学分析与优化。E-mail:cluyun@sjtu.edu.cn

  • 中图分类号: U661.44

Ship mounting structure damping material optimization distribution and experimental study

知识共享许可协议
船舶基座阻尼材料敷设优化及实验研究李磊鑫,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  船舶基座结构是船舶减振的重要设备,为提高基座结构的减振效果,在结构表面敷设阻尼材料是常用手段。  方法  以基座结构的加速度振级落差为评价指标,应用各向正交惩罚材料密度法(SIMP),建立自由阻尼材料的拓扑优化数学模型。在优化模型中,其约束条件是确保在阻尼材料总使用量一定的情况下实现阻尼材料在基座结构表面的最优分布。最后,以某型船的主机基座为例,在建立的有限元模型的基础上,开展基座结构阻尼材料拓扑优化的数值计算,并利用基座模型实验的方法对拓扑优化数值计算结果进行实验验证。  结果  经验证,获得了阻尼材料的最优敷设方案。  结论  所得成果对船舶基座结构设计和复合材料的应用具有一定的参考价值。
  • 图  1  阻尼材料敷设模型

    Figure  1.  Sketch of damping material distribution

    图  2  基座结构有限元模型

    Figure  2.  Finite element model of the mounting structure

    图  3  评价点群的加速度幅值

    Figure  3.  Acceleration values of the evaluation points

    图  4  评价点群的振级落差

    Figure  4.  Acceleration level difference of the evaluation points

    图  5  阻尼材料分布

    Figure  5.  Distribution of damping materials on the mounting structure

    图  6  优化后评价点群的加速度幅值

    Figure  6.  Acceleration value of evaluation points after optimization

    图  7  优化后评价点群的振级落差

    Figure  7.  Acceleration level difference of evaluation points after optimization

    图  8  基座阻尼拓扑优化实验

    Figure  8.  Damping materials distribution experiment

    图  9  振级落差对比

    Figure  9.  Comparison of acceleration level difference

    表  1  材料力学特性

    Table  1.   The mechanical properties of materials

    材料弹性模量E/ MPa泊松比损耗因子η密度/(kg·m-3
    210 0000.300.0017 800
    阻尼材料750.490.7501 500
    下载: 导出CSV
  • [1] RIBEIRO E A, PEREIRA J T, BAVASTRI C A. Passive vibration control in rotor dynamics:optimization of composed support using viscoelastic materials[J]. Journal of Sound and Vibration, 2015, 351:43-56. doi: 10.1016/j.jsv.2015.04.007
    [2] 俞强, 王磊, 刘伟.舰船推进轴系的螺旋桨激励力传递特性[J].中国舰船研究, 2015, 10(6):81-86, 94. http://www.ship-research.com/CN/abstract/abstract1458.shtml

    YU Q, WANG L, LIU W. Transmission characteristics of propeller excitation for naval marine propulsion shafting[J]. Chinese Journal of Ship Research, 2015, 10(6):81-86, 94(in Chinese). http://www.ship-research.com/CN/abstract/abstract1458.shtml
    [3] 蒋亚礼, 吕林华, 杨德庆.提高船用阻尼材料应用效果的优化设计方法[J].中国舰船研究, 2012, 7(4):48-53. http://www.ship-research.com/CN/abstract/abstract481.shtml

    JIANG Y L, LV L H, YANG D Q. Design methods for damping materials applied to ships[J]. Chinese Journal of Ship Research, 2012, 7(4):48-53(in Chinese). http://www.ship-research.com/CN/abstract/abstract481.shtml
    [4] 吕林华, 杨德庆.船舶钢-复合材料组合基座减振设计方法分析[J].上海交通大学学报, 2012, 46(8):1196-1201. http://www.cqvip.com/QK/92944X/201208/43112970.html

    LV L H, YANG D Q. Study on vibration reduction design of steel-composite materials hybrid mounting for ships[J]. Journal of Shanghai Jiaotong University, 2012, 46(8):1196-1202(in Chinese). http://www.cqvip.com/QK/92944X/201208/43112970.html
    [5] 许树浩, 桂洪斌.浮筏系统隔振性能的功率流评价指标[J].船舶力学, 2012, 16(5):567-572. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_cblx201205014

    XU S H, GUI H B. Power flow estimation of float raft isolation system[J]. Journal of Ship Mechanics, 2012, 16(5):567-572(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_cblx201205014
    [6] 张梗林, 杨德庆, 朱金文.船用新型蜂窝隔振器减振性能分析[J].中国舰船研究, 2013, 8(4):52-58. http://www.ship-research.com/CN/abstract/abstract925.shtml

    ZHANG G L, YANG D Q, ZHU J W. Performance analysis of a novel marine honeycomb vibration isolator[J]. Chinese Journal of Ship Research, 2013, 8(4):52-58(in Chinese). http://www.ship-research.com/CN/abstract/abstract925.shtml
    [7] 祝驰誉, 温华兵.丁基橡胶阻尼材料对基座减振的实验研究[J].造船技术, 2015(2):50-53. http://www.cqvip.com/QK/93883X/201502/664745483.html

    ZHU C Y, WEN H B. An experimental study on butyl rubber damping material applied to base structure[J]. Marine Technology, 2015(2):50-53(in Chinese). http://www.cqvip.com/QK/93883X/201502/664745483.html
    [8] 石慧荣, 高溥, 李宗刚, 等.局部约束阻尼柱壳振动分析及优化设计[J].振动与冲击, 2013, 32(22):146-151, 173. doi: 10.3969/j.issn.1000-3835.2013.22.027

    SHI H R, GAO P, LI Z G, et al. Vibration analysis and optimization design of a cylindrical shell treated with constrained layer damping[J]. Journal of Vibration and Shock, 2013, 32(22):146-151, 173(in Chinese). doi: 10.3969/j.issn.1000-3835.2013.22.027
    [9] SARAVANAN C, GANESAN N, RAMAMURTI V. Vibration and damping analysis of multilayered fluid filled cylindrical shells with constrained viscoelastic damping using modal strain energy method[J]. Computers & Structures, 2000, 75(4):395-417. https://www.sciencedirect.com/science/article/pii/S0045794999000991
    [10] BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2):197-224. doi: 10.1016/0045-7825(88)90086-2
    [11] ZHENG H, PAU G S H, WANG Y Y. A comparative study on optimization of constrained layer damping treatment for structural vibration control[J]. Thin-Walled Structures, 2006, 44(8):886-896. doi: 10.1016/j.tws.2006.08.005
    [12] KANG Z, ZHANG X P, JIANG S G, et al. On topology optimization of damping layer in shell structures under harmonic excitations[J]. Structural and Multidisciplinary Optimization, 2012, 46(1):51-67. doi: 10.1007/s00158-011-0746-4
    [13] TAKEZAWA A, DAIFUKU M, NAKANO Y, et al. Topology optimization of damping material for reducing resonance response based on complex dynamic compliance[J]. Journal of Sound and Vibration, 2016, 365:230-243. doi: 10.1016/j.jsv.2015.11.045
    [14] ZHENG H, CAI C, TAN X M. Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams[J]. Computers & Structures, 2004, 82(29/30):2493-2507. https://www.sciencedirect.com/science/article/pii/S0045794904002767
    [15] YUN K S, YOUN S K. Multi-material topology optimization of viscoelastically damped structures under time-dependent loading[J]. Finite Elements in Analysis and Design, 2017, 123:9-18. doi: 10.1016/j.finel.2016.09.006
  • 2017-6-86_en.pdf
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  69
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-17
  • 网络出版日期:  2017-11-28
  • 刊出日期:  2017-12-08

目录

    /

    返回文章
    返回