留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于湍流脉动压力的波数-频率谱预报流噪声

伍宏亮 周其斗 吕晓军 孟庆昌

伍宏亮, 周其斗, 吕晓军, 孟庆昌. 基于湍流脉动压力的波数-频率谱预报流噪声[J]. 中国舰船研究, 2017, 12(6): 36-42. doi: 10.3969/j.issn.1673-3185.2017.06.006
引用本文: 伍宏亮, 周其斗, 吕晓军, 孟庆昌. 基于湍流脉动压力的波数-频率谱预报流噪声[J]. 中国舰船研究, 2017, 12(6): 36-42. doi: 10.3969/j.issn.1673-3185.2017.06.006
WU Hongliang, ZHOU Qidou, LV Xiaojun, MENG Qingchang. Flow noise prediction based on wavenumber-frequency spectrum of turbulent fluctuating pressure[J]. Chinese Journal of Ship Research, 2017, 12(6): 36-42. doi: 10.3969/j.issn.1673-3185.2017.06.006
Citation: WU Hongliang, ZHOU Qidou, LV Xiaojun, MENG Qingchang. Flow noise prediction based on wavenumber-frequency spectrum of turbulent fluctuating pressure[J]. Chinese Journal of Ship Research, 2017, 12(6): 36-42. doi: 10.3969/j.issn.1673-3185.2017.06.006

基于湍流脉动压力的波数-频率谱预报流噪声

doi: 10.3969/j.issn.1673-3185.2017.06.006
基金项目: 

国家自然科学基金资助项目 51309230

详细信息
    作者简介:

    伍宏亮, 男, 1992年生, 硕士生。研究方向:船舶水动力噪声。E-mail:1404587678@qq.com

    通信作者:

    周其斗(通信作者), 男, 1962年生, 教授, 博士生导师。研究方向:振动与噪声控制, 水动力学。E-mail:qidou_zhou@126.com

  • 中图分类号: U661.44

Flow noise prediction based on wavenumber-frequency spectrum of turbulent fluctuating pressure

知识共享许可协议
基于湍流脉动压力的波数-频率谱预报流噪声伍宏亮,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  根据Lighthill声类比方程及其发展理论,可以将壁面湍流脉动压力的波数-频率谱作为声源项来预报流噪声,且分析湍流脉动压力的波数-频率谱有助于了解湍流结构的时空关联特性。  方法  以NACA 0012翼型为例,采用大涡模拟(LES)方法进行流场仿真计算,然后通过Fourier变换得到壁面湍流脉动压力波数-频率谱的数值解,并与Corcos的平板湍流边界层脉动压力波数-频率谱模型进行比较;在此基础上,将该波数-频率谱作为声源输入,代入Goldstein版本的声类比方程中预报辐射噪声,并与软件计算的流噪声结果以及Brooks试验拟合结果进行比较。  结果  结果发现:小曲率变化的NACA 0012翼型表面的波数-频率谱具有与平板表面相似的一般特性;在中、低频段采用该方法预报的流噪声结果与Brooks试验结果拟合更好。  结论  所得结果表明开展波数-频率谱研究是有必要的,将其作为主要声源项来预报亚声速下产生的流噪声是合理的。
  • 图  1  Corcos关于无限大平板的波数—频率谱模型(1 200 Hz)

    Figure  1.  Wavenumber-frequency spectrum model on infinite plate of Corcos at frequency of 1 200 Hz

    图  2  壁面脉动压力谱的特征

    Figure  2.  Characteristics of the wall fluctuating pressure spectrum

    图  3  机翼上表面的网格划分

    Figure  3.  Mesh on the upper surface of the airfoil

    图  4  机翼运动的计算域模型

    Figure  4.  Computational domain model of airfoil motion

    图  5  机翼上、下表面的压力系数分布

    Figure  5.  Pressure coefficient distributions of the upper and lower surface of the airfoil

    图  6  NACA 0012翼型上波数—频率谱的数值计算结果

    Figure  6.  Numerical results of wavenumber-frequency spectrum on NACA 0012 airfoil

    图  7  流噪声预报结果的对比

    Figure  7.  Comparison of flow noise with Brooks empirical prediction results

  • [1] CORCOS G M. Resolution of pressure in turbulence[J]. Journal of the Acoustical Society of America, 1963, 35(2):192-199. doi: 10.1121/1.1918431
    [2] 李环, 刘聪尉, 吴方良, 等.水动力噪声计算方法综述[J].中国舰船研究, 2016, 11(2):72-89. http://www.ship-research.com/CN/abstract/abstract1530.shtml

    LI H, LIU C W, WU F L, et al. A review of the progress for computational methods for hydrodynamic noise[J]. Chinese Journal of Ship Research, 2016, 11(2):72-89(in Chinese). http://www.ship-research.com/CN/abstract/abstract1530.shtml
    [3] 王超, 郑小龙, 张立新, 等.用LES和无限元耦合方法预报潜艇流噪声[J].噪声与振动控制, 2015, 35(1):1-6. http://d.wanfangdata.com.cn/Periodical/zsyzdkz201501003

    WANG C, ZHEN X L, ZHANG L X, et al. Prediction of submarine noise based on LES and infinite element method[J]. Noise and Vibration Control, 2015, 35(1):1-6(in Chinese). http://d.wanfangdata.com.cn/Periodical/zsyzdkz201501003
    [4] PAN Y C, ZHANG H X. LES method for investigation of noise generated by turbulent boundary layer[J]. Journal of Ship Mechanics, 2009, 13(6):990-1001. https://www.researchgate.net/publication/288146409_LES_method_for_investigation_of_noise_generated_by_turbulent_boundary_layer
    [5] ITO M. Improvement to the aerodynamic characteristics of shinkansen rolling stock[J]. Journal of Rail and Rapid Transit, 2000, 214(3):135-143. doi: 10.1243/0954409001531261
    [6] MORITOH Y, ZENDA Y. Aerodynamic noise of high speed railway cars[J]. Japanese Railway Engineering, 1994, 34(1):5-9. https://www.researchgate.net/publication/294625081_Aerodynamic_noise_of_highspeed_railway_cars
    [7] 肖友刚, 康志成.高速列车车头曲面气动噪声的数值预测[J].中南大学学报(自然科学版), 2008, 39(6):1267-1272. http://www.cqvip.com/Main/Detail.aspx?id=29048558

    XIAO Y G, KANG Z C. Numerical prediction of aerodynamic noise radiated from high speed train head surface[J]. Journal of Central South University(Science and Technology), 2008, 39(6):1267-1272(in Chinese). http://www.cqvip.com/Main/Detail.aspx?id=29048558
    [8] 王春旭, 曾革委, 许建.湍流边界层脉动压力波数-频率谱模型对比研究[J].中国舰船研究, 2011, 6(1):152-158. http://www.ship-research.com/CN/abstract/abstract388.shtml

    WANG C X, ZENG G W, XU J. A comparative study of models for the wavenumber-frequency spectrum of TBL fluctuation pressure[J]. Chinese Journal of Ship Research, 2011, 6(1):152-158(in Chinese). http://www.ship-research.com/CN/abstract/abstract388.shtml
    [9] BROOKS T F, HODGSON T H. Trailing edge noise prediction from measured surface pressures[J]. Journal of Sound and Vibration, 1981, 78(1):69-117. doi: 10.1016/S0022-460X(81)80158-7
    [10] CHASE D M. A model wavevector-frequency spectrum of turbulent-boundary-layer wall pressure[J]. Journal of the Acoustical Society of America, 1979, 65(Supp 1):S90. http://www.sciencedirect.com/science/article/pii/0022460X80905532
    [11] HOWE M S. Acoustics of fluid-structure interactions[M]. Cambridge:Cambridge University Press, 1998.
    [12] ECKERT E R G, DRAKE R M. Heat and mass transfer[M]. 2nd ed. New York:McGraw-Hill Book Company, 1959.
    [13] GOLDSTEIN M E. Aeroacoustics[M]. New York:Hill Book Company, 1976.
    [14] 周其斗.翼型体广谱声的频域预报方法[J].水动力学研究与进展, 2003, 18(3):253-260. http://www.cqvip.com/qk/94099X/200303/7946600.html

    ZHOU Q D. Broadband noise prediction of an airfoil or hydrofoil based on a frequency-domain formulation[J]. Journal of Hydrodynamics, 2003, 18(3):253-260(in Chinese). http://www.cqvip.com/qk/94099X/200303/7946600.html
    [15] 王岱峰, 代钦.近自由表面对称翼型气动特性的实验研究[J].水动力学研究与进展, 2010, 25(5):703-710. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sdlj201005018&dbname=CJFD&dbcode=CJFQ

    WANG D F, DAI Q. Experimental research on the aerodynamics of a symmetrical airfoil near free surface[J]. Journal of Hydrodynamics, 2010, 25(5):703-710(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sdlj201005018&dbname=CJFD&dbcode=CJFQ
    [16] WU H L, ZHOU Q D, PAN Y C. Wave number-frequency spectrum of turbulent fluctuating pressure on airfoil surface[C]//Proceedings of the 24th International Congress on Sound and Vibration, 2017. https://www.researchgate.net/publication/257852744_Wave_number-frequency_spectrum_of_turbulent_pressure_fluctuations_Methods_of_measurement_and_results
    [17] 李福新, 张宇文.低波数下平板湍流边界层壁压起伏的波-频率谱[J].西北工业大学学报, 1999, 17(2):9-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xbgd901.002&dbname=CJFD&dbcode=CJFQ

    LI F X, ZHANG Y W. Wavenumber frequency spectrum of the turbulent boundary layer wall pressure of a plate at acoustic and subconvective wavenumbers[J]. Journal of Northwestern Poly technical University, 1999, 17(2):9-14(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xbgd901.002&dbname=CJFD&dbcode=CJFQ
  • 2017-6-36_en.pdf
  • 加载中
图(7)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  104
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-03
  • 网络出版日期:  2017-11-28
  • 刊出日期:  2017-12-08

目录

    /

    返回文章
    返回