Influencing factor analysis for direct calculation of trimaran structure's fatigue strength
-
摘要:
目的 针对三体船连接桥部位的疲劳强度问题, 方法 以某型三体船为例,采用三维线性势流理论计算规则波中的船体运动及外部水动压力分布,通过全船有限元分析得到不同浪向角规则波中各热点的应力传递函数,基于线性累积损伤理论,运用谱分析的直接计算法进行各热点的疲劳累积损伤计算,并探讨不同海域、浪向时间分配等影响因素对疲劳损伤的影响。 结果 结果表明,采用中、近海海况并考虑浪向时间分配时疲劳损伤较大。 结论 所得结论对三体船的研发设计具有参考意义。 Abstract: According to the problem of a trimaran cross-deck structure's fatigue strength, taking one trimaran as an example, the responses of ship motion and hydrodynamic pressure on the ship's surface in regular waves are calculated on the basis of the 3D linear potential flow theory. Next, the stress responses of hot-spots in regular waves with different wave angles are evaluated by the finite element analysis of the global trimaran structure. On the basis of linear cumulative damage theories, the fatigue damage is calculated according to the direct calculate method using spectral analysis. Finally, the effect of different sea areas and heading angles' time factors are discussed. The results show that the fatigue damage is greater when using an inshore sea area and considering the time factors of heading angles. The result can offer a reference for the design and development of trimarans.-
Key words:
- trimaran /
- hot-spot stress /
- spectral analysis method /
- fatigue strength assessment
-
表 1 中国沿海海况出现概率
Table 1. China coastal sea and its probability of occurance
有义波高
Hs/m跨零周期Tz/s < 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 0.5 1.3 6.4 7.6 3.6 0.9 0.2 - - 1.5 0.2 4.1 11.8 10.8 4.7 1.2 0.2 - 2.5 - 1.4 6.4 8.5 5.2 1.9 0.5 0.1 3.5 - 0.4 2.6 4.5 3.4 1.5 0.4 0.1 4.5 - 0.1 0.9 1.9 1.7 0.9 0.3 0.1 5.5 - - 0.3 0.8 0.8 0.5 0.2 0.1 6.5 - - 0.1 0.3 0.3 0.2 0.1 - 7.5 - - - 0.1 0.2 0.1 0.1 - 8.5 - - - 0.1 0.1 0.1 - - 表 2 不同海况下的疲劳累积损伤
Table 2. Fatigue cumulative damage under different wave scatter diagrams
肋位 编号 西北太平洋 中国沿海 疲劳累
积损伤D寿命/年 疲劳累
积损伤D寿命/年 FR83 1 2.583 1 7.74 4.288 0 4.66 2 4.174 3 4.79 6.953 5 2.88 FR47 3 0.326 6 61.23 0.548 2 36.48 4 0.326 7 61.21 0.549 3 36.41 5 0.275 6 72.56 0.463 5 43.15 6 0.065 5 305.34 0.107 8 185.47 FR25 7 0.178 4 112.13 0.300 5 66.56 FR45 8 0.008 4 >300 0.013 5 >300 9 0.005 7 >300 0.009 0 >300 表 3 考虑浪向时间分配疲劳累积损伤
Table 3. Fatigue cumulative damage considering heading angles' time factors
肋位 编号 西北太平洋 中国沿海 疲劳累
积损伤D寿命/年 疲劳累
积损伤D寿命/年 FR83 1 1.494 8 13.38 2.395 9 8.35 2 2.155 7 9.28 3.479 0 5.75 FR47 3 0.245 6 81.43 0.408 0 49.02 4 0.223 2 89.60 0.371 3 53.86 5 0.219 9 90.94 0.367 9 54.37 6 0.049 8 401.61 0.079 5 251.50 FR25 7 0.192 8 103.73 0.324 8 61.58 FR45 8 0.007 7 >300 0.012 0 >300 9 0.006 3 >300 0.009 6 >300 -
[1] 卢晓平, 郦云, 董祖舜.高速三体船研究综述[J].海军工程大学学报, 2005, 17(2):43-48, 52. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGZC200409001030.htmLU X P, LI Y, DONG Z S. A research summary on high speed trimaran[J]. Journal of Naval University of Engi-neering, 2005, 17(2):43-48, 52(in Chinese). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGZC200409001030.htm [2] 刁端信, 谢延明.三体船及其在反水雷舰船上的应用探索[J].船舶, 2007(6):14-16. http://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ200706005.htmDIAO D X, XIE Y M. Trimaran and its application on mine-countermeasure ship[J]. Ship and Boat, 2007(6):14-16(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ200706005.htm [3] ARMSTRONG T. On the performance of a large high-speed trimaran[J]. Australian Journal of Mechan-ical Engineering, 2006, 3(2):121-131. [4] FANG M C, CHEN T Y. A parametric study of wave loads on trimaran ships traveling in waves[J]. Ocean Engineering, 2008, 35(8/9):749-762. [5] 张文鹏, 宗智, 倪少玲, 等.三体船耐波性的模型试验研究[J].水动力学研究与进展, 2007, 22(5):619-624. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200705013.htmZHANG W P, ZONG Z, NI S L, et al. Model testing of seakeeping performance of trimaran[J]. Journal of Hy-drodynamics, 2007, 22(5):619-624(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200705013.htm [6] Lloyd's Register. Rules for the classification of trima-rans[S]. Britain:Lloyd's Register, 2006. [7] Tony Armstrong. On the performance of a large high-speed trimaran[J]. Australian Journal of Mechan-ical Engineering, 2006, 3(2):123-132. [8] WANG Y G. Spectral fatigue analysis of a ship structur-al detail-a practical case study[J]. International Jour-nal of Fatigue, 2010, 32(2):310-317. doi: 10.1016/j.ijfatigue.2009.06.020 [9] LOTSBERG I. Assessment of fatigue capacity in the new bulk carrier and tanker rules[J]. Marine Struc-tures, 2006, 19(1):83-96. doi: 10.1016/j.marstruc.2006.03.001 [10] BENASCIUTTI D, TOVO R. Spectral methods for life-time prediction under wide-band stationary random processes[J]. International Journal of Fatigue, 2005, 27(8):867-877. doi: 10.1016/j.ijfatigue.2004.10.007 [11] 彭营豪. 三体船结构疲劳强度研究[D]. 哈尔滨: 哈尔滨工程大学, 2011: 42-43. [12] 戴仰山, 沈进威, 宋竞正.船舶波浪载荷[M].北京:国防工业出版社, 2007.DAI Y S, SHEN J W, SONG J Z. Ship wave loads[M]. Beijing:National Defense Industry Press, 2007(in Chinese). [13] 胡毓仁, 李典庆, 陈伯真.船舶与海洋工程结构疲劳可靠性分析[M].哈尔滨:哈尔滨工程大学出版社, 2010:110-114. [14] 中国船级社. 船体结构疲劳强度指南[S]. 北京: 人民交通出版社, 2007.China Classification Society. Guide for fatigue strength of ship structures[S]. Beijing:China Commu-nication Press, 2007(in Chinese). -